Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400683, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039980

ABSTRACT

To achieve carbon neutrality and sustainable development, innovative solar-to-fuel systems have been designed through the integration of solar energy harvesting and electrochemical devices. Over the last decade, there have been notable advancements in enhancing the efficiency and durability of these solar-to-fuel systems. Despite the advancements, there remains significant potential for further improvements in the performance of systems. Enhancements can be achieved by optimizing electrochemical catalysts, advancing the manufacturing technologies of photovoltaics and electrochemical cells, and refining the overall design of these systems. In the realm of catalyst optimization, the effectiveness of materials can be significantly improved through active site engineering and strategic use of functional groups. Similarly, the performance of electrochemical devices can be enhanced by incorporating specific additives into electrolytes and optimizing gas diffusion electrodes. Improvements in solar harvesting devices are achievable through efficient passivant and self-assembled monolayers, which enhance the overall quality and efficiency of these systems. Additionally, optimizing the energy conversion efficiency involves the strategic use of DC converters, photoelectrodes, and redox media. This review aims to provide a comprehensive overview of the advancements in solar-powered electrochemical energy conversion systems, laying a solid foundation for future research and development in the field of energy sustainability.

2.
Materials (Basel) ; 17(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38793522

ABSTRACT

The present paper introduces an innovative strain energy function (SEF) for incompressible anisotropic fiber-reinforced materials. This SEF is specifically designed to understand the mechanical behavior of carbon fiber-woven fabric. The considered model combines polyconvex invariants forming an integrity basisin polynomial form, which is inspired by the application of Noether's theorem. A single solution can be obtained during the identification because of the relationship between the SEF we have constructed and the material parameters, which are linearly dependent. The six material parameters were precisely determined through a comparison between the closed-form solutions from our model and the corresponding tensile experimental data with different stretching ratios, with determination coefficients consistently reaching a remarkable value of 0.99. When considering only uniaxial tensile tests, our model can be simplified from a quadratic polynomial to a linear polynomial, thereby reducing the number of material parameters required from six to four, while the fidelity of the model's predictive accuracy remains unaltered. The comparison between the results of numerical calculations and experiments proves the efficiency and accuracy of the method.

3.
Nat Commun ; 15(1): 2753, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553436

ABSTRACT

Low-dimensional/three-dimensional perovskite heterojunctions have shown great potential for improving the performance of perovskite photovoltaics, but large organic cations in low-dimensional perovskites hinder charge transport and cause carrier mobility anisotropy at the heterojunction interface. Here, we report a low-dimensional/three-dimensional perovskite heterojunction that introduces strong aromatic conjugated low-dimensional perovskites in p-i-n devices to reduce the electron transport resistance crossing the perovskite/electron extraction interface. The strong aromatic conjugated π-conjugated network results in continuous energy orbits among [Pb2I6]2- frameworks, thereby effectively suppressing interfacial non-radiative recombination and boosting carrier extraction. Consequently, the devices achieved an improved efficiency to 25.66% (certified 25.20%), and maintained over 95% of the initial efficiency after 1200 hours and 1000 hours under ISOS-L-1I and ISOS-D-1 protocols, respectively. The chemical design of strong aromatic conjugated molecules in perovskite heterojunctions provides a promising avenue for developing efficient and stable perovskite photovoltaics.

4.
Materials (Basel) ; 16(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37763556

ABSTRACT

High-velocity oxygen fuel (HVOF) spraying is a promising technique for depositing protective coatings. The performances of HVOF-sprayed coatings are affected by in-flight particle properties, such as temperature and velocity, that are controlled by the spraying parameters. However, obtaining the desired coatings through experimental methods alone is challenging, owing to the complex physical and chemical processes involved in the HVOF approach. Compared with traditional experimental methods, a novel method for optimizing and predicting coating performance is presented herein; this method involves combining machine learning techniques with thermal spray technology. Herein, we firstly introduce physics-informed neural networks (PINNs) and convolutional neural networks (CNNs) to address the overfitting problem in small-sample algorithms and then apply the algorithms to HVOF processes and HVOF-sprayed coatings. We proposed the PINN and CNN hierarchical neural network to establish prediction models for the in-flight particle properties and performances of NiCr-Cr3C2 coatings (e.g., porosity, microhardness, and wear rate). Additionally, a random forest model is used to evaluate the relative importance of the effect of the spraying parameters on the properties of in-flight particles and coating performance. We find that the particle temperature and velocity as well as the coating performances (porosity, wear resistance, and microhardness) can be predicted with up to 99% accuracy and that the spraying distance and velocity of in-flight particles exert the most substantial effects on the in-flight particle properties and coating performance, respectively. This study can serve as a theoretical reference for the development of intelligent HVOF systems in the future.

5.
Materials (Basel) ; 14(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832356

ABSTRACT

Alkaline electrolyzed water, a kind of clean green water with excellent characteristics such as high activity, strong alkalinity, high ion penetrating ability, electrical charge, and good molecule adsorption, was significant to the resource utilization of industrial fly ash waste. This paper studies highly active potassium-based alkaline electrolyzed water's impact, compared with ordinary water, on the cement hydration process using microstructural methods such as a hydration heat test, differential thermal analysis, X-ray diffraction (XRD) pattern, and Scanning electron microscope (SEM) image analysis. Fly ash cement-based materials were first prepared with alkaline electrolyzed water as the mixing water. The alkaline electrolyzed water's influence on fly ash paste workability and the mechanical properties of fly ash mortar for varying fly ash proportions were ratified. Then alkaline electrolyzed water with the best pH value was selected to prepare fly ash concrete, and its durability was studied. The test results showed that it is feasible to increase the utilization rate of fly ash by using alkaline electrolyzed water. Furthermore, it promoted the process of cement hydration, increased the rate of the hydration reaction, and the promotion effect increased with the increase in pH value of the alkaline electrolyzed water, and also promoted the effective decomposition of the vitreous shell of fly ash to stimulate its early activity. Concurrent tests with ordinary water paste showed that the water requirement for normal consistency and setting time with alkaline electrolyzed water paste were significantly less. Alkaline electrolyzed water also solved the problem related to the low early strength of fly ash mortar. Furthermore, using alkaline electrolyzed water with an optimum pH value of 11.5 to prepare fly ash concrete effectively reduced concrete's carbonation depth and carbonation rate and lessened the chloride ion migration coefficient.

6.
J Colloid Interface Sci ; 534: 637-648, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30268080

ABSTRACT

The deposition of oxygen-defective ZnO films exhibiting varied nanostructures via Solution Precursor Plasma Spray (SPPS) route, a one-step, minute-scaled duration and large scale method, is reported. The in situ formation of oxygen vacancies in ZnO films was confirmed by UV-Visible, Raman and photoluminescence (PL) spectroscopy and the as-prepared samples exhibit a bandgap as low as 3.02 eV. Density functional theory (DFT) simulation demonstrates that the polarization of ZnO is enhanced by the created oxygen vacancies, leading to substantially improved photocatalytic activity. The comparative experiments also revealed that forming and preserving appropriate ZnO precursor clusters inside the plasma plume is requisite for obtaining propitious ZnO nanostructures, which was followed by the in situ transfer and growth of the clusters on the preheated substrate. The ZnO-NRs films fully degrade the aqueous Orange II dye solutions within 120 min and maintain a quasi-intact activity (95.8% retention) after five test runs, which highlight their good stability. The oxygen vacancies and the narrowing of the bandgap also enable a visible light-driven photodegradation activity with conversions as high as 54.1%. In summary, this work not only reveals that the photocatalytic activity of SPPS-deposited ZnO films benefit from oxygen vacancies and well nanostructures, but also suggests that the SPPS route is of high potential for preparing metal oxides films destined to functional applications.

7.
Nanotechnology ; 30(4): 045707, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30479317

ABSTRACT

Binary spinel-type metal oxides (AB2O4) related materials, including ferrites (AFe2O4), are attractive photocatalysts thanks to their excellent visible light response for the photodegradation of organic pollutants. Currently, these materials are synthesized via conventional chemical routes suffering from long preparation duration and multistep. Moreover, the photocatalysts are obtained as nano-powders from conventional chemical routes would introduce another drawback for their recycling and reuse. From an industrial perspective, it is desirable to develop an efficient and facile synthesis process to produce photocatalysts in a non-dispersible form. Herein, we demonstrate that the solution precursor plasma spray (SPPS) process is a single-step method for depositing photocatalytically active zinc ferrite-based films within several minutes. The influence of the precursor ratio on the microstructures and phase compositions of the ZnFe2O4 films was investigated by XRD and Raman analyses. In addition, two optimized ZnFe2O4 films were prepared by increasing the ZnO loading and tailoring injection pattern of the precursor solution. The surface morphologies and optical bandgap were also determined by SEM and UV-visible spectroscopy. The photocatalytic activities of the ZnFe2O4 films were evaluated through the degradation of the Orange II dye and of tetracycline hydrochloride under UV or visible light irradiation. The results show that compositional ratios and composition distribution of the ZnFe2O4 films prepared via SPPS played a key role on the photocatalytic activity. The SPPS route was demonstrated to be a promising method for the synthesis and the deposition of metal oxide (i.e. perovskite type and spinel type) films within a single-step for functional applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...