Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(54): 116266-116278, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910359

ABSTRACT

Antenatal exposure to air pollutants is thought to be associated with a variety of maternal blood markers as well as adverse birth outcomes. However, the dysgenic influence of air pollutants on the antiphospholipid syndrome (APS) in mothers and their pregnancy outcomes remains unclear. In the current study, 371 mother-infant pairs (189 healthy: 182 APS) from Nanjing Maternal and Child Health Hospital as well as air pollutants concentration from their living environment were used to investigate correlations between air pollution with maternal blood indicators and fetal birth weight in the groups of APS and healthy mothers. Generalized linear model was used to evaluate the contributions of air pollutant exposure during pregnancy to the blood indicators variation. The relationships between birth weight with specific air pollutant and blood index were analyzed using ridge regression. Results showed that APS fetal birth weight was significantly impacted by air pollutant exposure during pregnancy, in particular, the birth weight decreased significantly along with increasing fine particulate matter 2.5 (PM2.5) and fine particulate matter 10 (PM10) exposure concentrations throughout pregnancy. In contrast, birth weight increased significantly with sulfur dioxide (SO2) exposure. In addition, APS-related blood indicators comprised of platelet distribution width (PDW), total bilirubin (TBIL), mean platelet volume (MPV), platelet-larger cell ratio (P_LCR), homocysteine (HCY), alkaline phosphatase (ALP), direct bilirubin (DBIL), basophilic granulocyte (BAS), platelet thrombocytocrit (PCT), preprandial glucose levels (OGTT0), monocytes (MON), and monocytes ratio (MON_ratio) were also strongly related with prenatal exposure to PM2.5 and PM10, in which PDW levels showed most strongly negative impaction on fetal birth weight. Together, we showed that prenatal exposure to air pollutant (PM2.5 and PM10) may exacerbate the poor birth outcomes of low birth weight by impacting APS maternal blood indicators especially for PDW.


Subject(s)
Air Pollutants , Air Pollution , Antiphospholipid Syndrome , Prenatal Exposure Delayed Effects , Infant , Child , Humans , Female , Pregnancy , Pregnant Women , Birth Weight , Prenatal Exposure Delayed Effects/chemically induced , Antiphospholipid Syndrome/chemically induced , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Pregnancy Outcome , Bilirubin , China , Maternal Exposure
2.
Mol Pharm ; 20(12): 6429-6440, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37903292

ABSTRACT

Endothelial cell damage is an important feature of preeclampsia (PE). Human umbilical mesenchymal stem-cell-derived extracellular vesicles (HUMSCs-derived EVs) have been shown to have therapeutic effects on a variety of diseases and tissue damage. However, the therapeutic effect of HUMSCs-derived EVs on endothelial injury in PE remains unclear. This study explored the possible mechanism of HUMSCs-derived EVs in the treatment of endothelial cell injury. Tumor necrosis factor α- and lipopolysaccharide-induced endothelial dysfunction models were used to evaluate the therapeutic effect of HUMSCs-derived EVs on endothelial injury. We further constructed PE mouse models to explore the function of HUMSCs-derived EVs in vivo. The changes of metabolites in endothelial cells after HUMSCs-derived EVs treatment were analyzed by metabolomics analysis and further validated by cell experiments. HUMSCs-derived EVs treatment can alleviate endothelial cell injury in PE, involving cell proliferation, migration, angiogenesis, and anti-inflammatory. Importantly, administration of HUMSCs-derived EVs improves hypertension and proteinuria in PE mice, alleviates kidney damage, and promotes vascularization in the placenta. Furthermore, metabolomics analysis found that the arginine metabolic pathway is activated after HUMSCs-derived EVs treatment. We also observed increased arginine level, nitric oxide content, and nitric oxide synthase activity, and further experiments proved that activating the arginine metabolic pathway could alleviate endothelial dysfunction. Our results reveal that HUMSCs-derived EVs could ameliorate PE endothelial dysfunction by activating the arginine metabolic pathway and may serve as a therapeutic method for treating PE.


Subject(s)
Extracellular Vesicles , Pre-Eclampsia , Pregnancy , Female , Humans , Mice , Animals , Pre-Eclampsia/therapy , Pre-Eclampsia/metabolism , Endothelial Cells , Extracellular Vesicles/metabolism , Umbilical Cord , Arginine
3.
Tissue Cell ; 74: 101676, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34798583

ABSTRACT

Both intrauterine adhesions (IUA) and premature ovarian failure (POF) have plagued women all over the world for a long time. It is well known that all invasive operations involving the uterus can disrupt its structural and functional integrity to a varying degree, which inevitably lead to abnormal scar formation, such as IUA, also known as Asherman's syndrome with symptoms like hypomenorrhea or infertility. Another reproductive disorder that causes infertility is primary ovarian insufficiency (POI) or POF, which is a degenerative phenomenon in the ovary among women under the age of 40. In recent years, various types of stem cells, especially mesenchymal stem cells (MSCs) have been widely used in reproductive medicine due to their properties, such as immunoregulation, anti-inflammation, angiogenesis, anti-apoptosis, and trophicity. However, the extensive clinical application of cell therapy is impeded by their safety, cost, and manufacturing. In this review, we sought to summarize the recent advances in using different types of MSCs in treating uterine scars and POF. We also describe several biological pathways and molecules involved in animal studies and clinical application; extracellular vesicles secreted by MSCs may be a promising attractive tool to ensure the treatment of infertility by restoring normal reproductive function.


Subject(s)
Cicatrix/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Ovary/metabolism , Primary Ovarian Insufficiency/therapy , Uterus/metabolism , Animals , Cicatrix/metabolism , Female , Humans , Primary Ovarian Insufficiency/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...