Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 244: 109919, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673941

ABSTRACT

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Subject(s)
ADP-ribosyl Cyclase 1 , Angiotensin II , Aortic Aneurysm, Abdominal , Mice, Knockout , Myocytes, Smooth Muscle , Vascular Remodeling , Animals , Male , Mice , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Signal Transduction , Vascular Remodeling/genetics
3.
Article in English | MEDLINE | ID: mdl-38416803

ABSTRACT

Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Mice , Animals , Aged , Coronary Artery Disease/genetics , Endothelial Cells/metabolism , Genome-Wide Association Study , Mice, Knockout, ApoE , Atherosclerosis/genetics , Proteins , Cellular Senescence
4.
Front Oncol ; 12: 853935, 2022.
Article in English | MEDLINE | ID: mdl-35402260

ABSTRACT

Tripartite motif containing 65 (TRIM65) is an E3 ubiquitin ligase that has been implicated in a variety of cellular processes as well as tumor progression, but its biological role and the underlying mechanism in cervical cancer is unclear. Here, we reported that TRIM65 expression in human cervical cancer tissues was significantly higher than that in the adjacent normal cervical tissues, and TRIM65 knockdown enhanced autophagic flux and cell apoptosis, but not cell cycle, to dramatically inhibit the proliferation and migration of cervical cancer cells. Furthermore, our experiments showed that TRIM65 exhibited oncogenic activities via directly targeting p53, a tumor suppressor and a common upsteam regulator between autophagy and apoptosis, promoting ubiquitination and proteasomal degradation of p53. Taken together, our studies demonstrated that TRIM65 knockdown promotes cervical cancer cell death through enhancing autophagy and apoptosis, suggesting that TRIM65 may be a potential therapeutic target for cervical cancer clinically.

5.
Stem Cell Res Ther ; 12(1): 501, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34507619

ABSTRACT

BACKGROUND: Hyperpigmentation of skin is caused by an imbalance between the melanosome/melanin synthesis in melanocytes and the melanosome/melanin degradation in keratinocytes. Although studies showed that stem cells play a role in hypopigmentation, the underlying mechanisms are far not elucidated. Human amniotic stem cells (hASCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) were considered to be a promising cell source for stem cells-based therapy of many diseases clinically due to their pluripotent potential, no tumorigenesis and immunogenicity, no ethical issues, and potent paracrine effects. Here, we reported that both hASCs and their conditional medium (CM) had a potent anti-hyperpigmentation in skin in vivo and in vitro. METHODS: hAESCs and hAMSCs were identified by RT-PCR, flow cytometric analysis and immunofluorescence. Effects of hASCs and hASC-CM on pigmentation were evaluated in B16F10 cells stimulated with α-melanocyte-stimulating hormone (α-MSH), and mouse ears or human skin substitutes treated with ultraviolet radiation B (UVB). Expressions of the key proteins related with melanogenesis and autophagic flux were detected by western blot in B16F10 cells for further exploring the effects and the underlying mechanisms of hAESC-CM and hAMSC-CM on melanogenesis and melanosome degradation. The hAMSCs exosomes-derived miRNAs were determined by sequencing. RT-PCR, western blot, melanin content analysis and luciferase activity assay were used to determine the hypopigmentation of miR-181a-5p and miR-199a. RESULTS: In our study, we observed that both hASCs and their CM significantly alleviated the α-MSH in B16F10 cells or UVB-induced hyperpigmentation in mouse ears or human skin substitutes by suppressing melanin synthesis and promoting melanosome degradation in vivo and in vitro. Furthermore, we demonstrated that miR-181a-5p and miR-199a derived from hASCs exosomes remarkably inhibited melanogenesis by suppressing MITF (microphthalmia-associated transcription factor) which is a master regulator for governing melanogenesis and promoting melanosome degradation through activating autophagy, respectively. CONCLUSIONS: Our studies provided strong evidence that the conditional medium and exosomes derived from hAMSCs inhibit skin hyperpigmentation by suppressing melanogenesis and promoting melanosome degradation, indicating that the hASCs exosomes or their released microRNAs might be as reagents for cell-free therapy in hyperpigmented disorders clinically.


Subject(s)
Hyperpigmentation , MicroRNAs , Animals , Humans , Melanocytes , Melanosomes , Mice , MicroRNAs/genetics , Stem Cells , Ultraviolet Rays
6.
Stem Cell Res Ther ; 12(1): 364, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34174964

ABSTRACT

BACKGROUND: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. METHODS: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid ß oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. RESULTS: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. CONCLUSION: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.


Subject(s)
Diet, High-Fat , Mesenchymal Stem Cells , 3T3-L1 Cells , Adipogenesis , Animals , Culture Media, Conditioned/pharmacology , Diet, High-Fat/adverse effects , Humans , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/therapy
7.
Eur J Pharmacol ; 779: 22-30, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26945822

ABSTRACT

Liver fibrosis is one of the major causes of morbidity and mortality worldwide and lacks efficient therapy. Recent studies suggest the curcumin protects liver from fibrosis. However, curcumin itself is in low bioavailable concentration when administered orally, and the protective mechanism remains poorly understood. The current study aimed to investigate whether a more stable derivative of curcumin, C66, protects against CCl4-inudced liver fibrosis and examine the underlying mechanism involving cannabinoid receptor (CB receptor). At a dose lower than curcumin itself, C66 displayed a superior anti-fibrotic effect. C66 significantly reduced collagen deposition, pro-inflammatory cytokine expression, and liver enzyme activities. Mechanistic study revealed that C66 treatment decreased CCl4-induced cannabinoid receptor 1 (CB1 receptor) expression and increased cannabinoid receptor 2 (CB2 receptor) expression, along with an inhibition of JNK/NF-κB-mediated inflammatory signaling. In conclusion, this curcumin derivative attenuates liver fibrosis likely involving a CB/JNK/NF-κB-mediated pathway.


Subject(s)
Carbon Tetrachloride/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Cytoprotection/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Receptors, Cannabinoid/metabolism , Animals , Curcumin/therapeutic use , Gene Expression Regulation/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Transport/drug effects , Receptors, Cannabinoid/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...