Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Cir Bras ; 38: e382923, 2023.
Article in English | MEDLINE | ID: mdl-37610966

ABSTRACT

PURPOSE: To explore effect and mechanism of olsalazine of Chinese generic drugs on ulcerative colitis induced by dextran sulfate sodium salt (DSS) in BALB/c mice. METHODS: The mouse model of ulcerative colitis was induced by free drinking of 3% (w/v) DSS aqueous solution for seven days. The mice were treated with olsalazine (0.6 g·kg-1) of Chinese generic drugs. The therapeutic effect of olsalazine on ulcerative colitis mice was evaluated by measuring disease activity index (DAI), colonic mucosal injury index (CMDI), histopathological score (HS), and detected the expression levels of interleukin (IL)-2, IL-10, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-1ß in serum and IL-7, IL-17, IL-22, epidermal growth factor (EGF), transforming growth factor ß1 (TGF-ß1) in colonic homogenate of mice. RESULTS: Olsalazine significantly increased the contents of IL-2, IL-10, IL-22, TGF and EGF in ulcerative colitis rats, and significantly decreased the scores of DAI, CMDI, HS and the contents in IL-7, IL-17, TNF-α, IL-1ß and IFN-γ when compared with the model group. It improved the degree of colonic lesion in ulcerative colitis mice. CONCLUSIONS: It was suggested that olsalazine has a therapeutic effect on ulcerative colitis induced by DSS in mice, and the mechanism may be related to the increase of IL-2, IL-10, IL-22, TGF, and EGF and the decrease of the expression of IL-7, IL-17, TNF-α, IL-1ß, and IFN-γ.


Subject(s)
Colitis, Ulcerative , Interleukin-17 , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate , Drugs, Generic , Epidermal Growth Factor , Interferon-gamma , Interleukin-10 , Interleukin-2 , Interleukin-7 , Mice, Inbred BALB C , Tumor Necrosis Factor-alpha , China , Disease Models, Animal
2.
Materials (Basel) ; 10(5)2017 May 08.
Article in English | MEDLINE | ID: mdl-28772873

ABSTRACT

As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

3.
Materials (Basel) ; 10(7)2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28773064

ABSTRACT

Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

4.
Materials (Basel) ; 10(8)2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28792487

ABSTRACT

Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

SELECTION OF CITATIONS
SEARCH DETAIL
...