Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 31: 1340-1348, 2022.
Article in English | MEDLINE | ID: mdl-35025744

ABSTRACT

Model fine-tuning is a widely used transfer learning approach in person Re-identification (ReID) applications, which fine-tuning a pre-trained feature extraction model into the target scenario instead of training a model from scratch. It is challenging due to the significant variations inside the target scenario, e.g., different camera viewpoint, illumination changes, and occlusion. These variations result in a gap between each mini-batch's distribution and the whole dataset's distribution when using mini-batch training. In this paper, we study model fine-tuning from the perspective of the aggregation and utilization of the dataset's global information when using mini-batch training. Specifically, we introduce a novel network structure called Batch-related Convolutional Cell (BConv-Cell), which progressively collects the dataset's global information into a latent state and uses it to rectify the extracted feature. Based on BConv-Cells, we further proposed the Progressive Transfer Learning (PTL) method to facilitate the model fine-tuning process by jointly optimizing BConv-Cells and the pre-trained ReID model. Empirical experiments show that our proposal can greatly improve the ReID model's performance on MSMT17, Market-1501, CUHK03, and DukeMTMC-reID datasets. Moreover, we extend our proposal to the general image classification task. The experiments in several image classification benchmark datasets demonstrate that our proposal can significantly improve baseline models' performance. The code has been released at https://github.com/ZJULearning/PTL.


Subject(s)
Machine Learning , Humans
2.
Article in English | MEDLINE | ID: mdl-32149635

ABSTRACT

The re-identification (ReID) task has received increasing studies in recent years and its performance has gained significant improvement. The progress mainly comes from searching for new network structures to learn person representations. Most of these networks are trained using the classic stochastic gradient descent optimizer. However, limited efforts have been made to explore potential performance of existing ReID networks directly by better training scheme, which leaves a large space for ReID research. In this paper, we propose a Self-Inspirited Feature Learning (SIF) method to enhance performance of given ReID networks from the viewpoint of optimization. We design a simple adversarial learning scheme to encourage a network to learn more discriminative person representation. In our method, an auxiliary branch is added into the network only in the training stage, while the structure of the original network stays unchanged during the testing stage. In summary, SIF has three aspects of advantages: (1) it is designed under general setting; (2) it is compatible with many existing feature learning networks on the ReID task; (3) it is easy to implement and has steady performance. We evaluate the performance of SIF on three public ReID datasets: Market1501, DuckMTMC-reID, and CUHK03(both labeled and detected). The results demonstrate significant improvement in performance brought by SIF. We also apply SIF to obtain state-of-the-art results on all the three datasets. Specifically, mAP / Rank-1 accuracy are: 87.6% / 95.2% (without re-rank) on Market1501, 79.4% / 89.8% on DuckMTMC-reID, 77.0% / 79.5% on CUHK03 (labeled) and 73.9% / 76.6% on CUHK03 (detected), respectively. The code of SIF will be available soon.

SELECTION OF CITATIONS
SEARCH DETAIL
...