Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1195-1210, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658157

ABSTRACT

To investigate the potential roles of stress-activated protein kinase (SAPK) gene family members in Dendrobium officinale, we employed multiple bioinformatics methods to identify the members of this family. The physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, and cis-acting elements of each D. officinale SAPK (DoSAPK) member were analyzed. In addition, their expression profiles in different tissues and under the low-temperature or salt stress treatment were determined by real-time fluorescence quantitative PCR. The results showed that D. officinale carried eight DoSAPK family members, which belonged to three groups (groups Ⅰ, Ⅱ, and Ⅲ). These genes were located on seven chromosomes, and there were two pairs of genes with replication. The DoSAPK members within the same group had similar gene structures, conserved motifs, and secondary structures. The cis-acting elements in the promoter regions of DoSAPK genes included abundant hormone and stress response elements. DoSAPK family members presented tissue-specific expression in D. officinale. Furthermore, they were differentially expressed under the low-temperature or salt stress treatment, which suggested that they might be involved in the responses to low-temperature and salt stress. Intriguingly, DoSAPK1 might play a role in the abiotic stress responses. The results laid a foundation for in-depth study of the members and roles of the DoSAPK gene family.


Subject(s)
Dendrobium , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Dendrobium/genetics , Dendrobium/enzymology , Plant Proteins/genetics , Stress, Physiological/genetics , Cold Temperature
2.
Plants (Basel) ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475427

ABSTRACT

Salvia miltiorrhiza is a plant commonly used in traditional Chinese medicine. Its material bases for treating diseases are tanshinones and phenolic acids, including salvianolic acids. Histone deacetylase proteins (HDACs) are a class of specific functional enzymes that interact with acetylation groups on the N-terminal lysine of histone proteins further regulate gene transcription through structural changes at the chromatin level. HDACs involved in the growth and development of various plants, and induced by plant hormones to regulate the internal environment of plants to resist stress, at the same time affect the accumulation of some secondary metabolites. However, the role of SmHDACs on the accumulation of salvianolic acid in S. miltiorrhiza remains unclear. In this study, 16 SmHDACs genes were identified from the high-quality S. miltiorrhiza genome, their physicochemical properties were predicted. In phylogenetic trees co-constructed with HDACs proteins from other plants, SmHDACs was divided into three subfamilies, each with similar motif and conserved domain composition. The distribution of the three subfamilies is similar to that of dicotyledonous plants. Chromosome localization analysis showed that SmHDACs genes were randomly located. Cis-acting element analysis predicted that SmHDACs gene expression may be related to and induced by various phytohormones, such as MeJA and ABA. By combining the expression pattern and co-expression network induced by phytohormones, we speculate that SmHDACs may further influence the synthesis of salvianolic acid, and identified SmHDA5, a potential functional gene, then speculate its downstream target based on the co-expression network. In summary, we analyzed the SmHDACs gene family of S. miltiorrhiza and screened out the potential functional gene SmHDA5. From the perspective of epigenetics, we proposed the molecular mechanism of plant hormone promoting salvianolic acid synthesis, which filled the gap in the subdivision of histone deacetylase in S. miltiorrhiza research, provided a theoretical basis for the culture and transformation of S. miltiorrhiza germplasm resources.

3.
Opt Lett ; 48(9): 2289-2292, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126256

ABSTRACT

The conventional belief propagation (BP) of the low-density parity-check (LDPC) is designed based on additive white Gaussian noise (AWGN) close to the Shannon limit; however, the correlated noise due to chromatic dispersion or square-law detection results in a performance penalty in the intensity modulation and direct-detection (IM/DD) system. We propose an iterative BP cascaded convolution neural network (CNN) decoder to mitigate the correlated channel noise. We use a model of correlated Gaussian noise to verify that the noise correlation can be identified by the CNN and the decoding performance is improved by the iterative processing. We successfully demonstrate the proposed method in a 50-Gb/s 4-ary pulse amplitude modulation (PAM-4) IM/DD system. The simulation results show that the proposed decoder can achieve a BER performance improvement which is robust to transmission distance and launch optical power. The experimental results show that the iterative BP-CNN decoder outperforms the standard BP decoder by 1.2 dB in received optical power over 25-km SSMF.

4.
Opt Lett ; 48(7): 1806-1809, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221771

ABSTRACT

In this paper, we present and experimentally demonstrate a digital-radio-over-fiber (D-RoF) architecture based on differential pulse code modulation (DPCM) and space division multiplexing (SDM). At low quantization resolution, DPCM can effectively reduce quantization noise and obtain significant signal-to-quantization noise ratio (SQNR) gain. We experimentally study the 7-core and 8-core multicore fiber transmission of 64-ary quadrature amplitude modulation (64QAM) orthogonal frequency division multiplexing (OFDM) signals with a bandwidth of 100 MHz in a fiber-wireless hybrid transmission link. Compared to PCM-based D-RoF, the error vector magnitude (EVM) performance in the DPCM-based D-RoF is effectively improved when the quantization bits (QBs) are 3-5 bits. In particular, when the QB is 3 bits, the EVM of the DPCM-based D-RoF is 6.5% and 7% lower than that of the PCM-based system in 7-core- and 8-core-multicore fiber-wireless hybrid transmission links, respectively.

5.
Opt Express ; 30(26): 46626-46648, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558611

ABSTRACT

In this paper, we put forward a data-driven fiber model based on the deep neural network with multi-head attention mechanism. This model, which predicts signal evolution through fiber transmission in optical fiber telecommunications, can have advantages in computation time without losing much accuracy compared with conventional split-step fourier method (SSFM). In contrast with other neural network based models, this model obtains a relatively good balance between prediction accuracy and distance generalization especially in cases where higher bit rate and more complicated modulation formats are adopted. By numerically demonstration, this model can have ability of predicting up to 16-QAM 160Gbps signals with any transmission distances ranging from 0 to 100 km under both circumstances of the signals without or with the noise.

6.
Opt Express ; 30(26): 46822-46837, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558624

ABSTRACT

Coded aperture snapshot spectral imaging (CASSI) can acquire rich spatial and spectral information at ultra-high speed, which shows extensive application prospects. CASSI innovatively employed the idea of compressive sensing to capture the spatial-spectral data cube using a monochromatic detector and used reconstruction algorithms to recover the desired spatial-spectral information. Based on the optical design, CASSI currently has two different implementations: single-disperser (SD) CASSI and dual-disperser (DD) CASSI. However, SD-CASSI has poor spatial resolution naturally while DD-CASSI increases size and cost because of the extra prism. In this work, we propose a deep learning-enabled reflective coded aperture snapshot spectral imaging (R-CASSI) system, which uses a mask and a beam splitter to receive the reflected light by utilizing the reflection of the mask. The optical path design of R-CASSI makes the optical system compact, using only one prism as two dispersers. Furthermore, an encoder-decoder structure with 3D convolution kernels is built for the reconstruction, dubbed U-net-3D. The designed U-net-3D network achieves both spatial and spectral consistency, leading to state-of-the-art reconstruction results. The real data is released and can serve as a benchmark dataset to test new reconstruction algorithms.

7.
Hortic Res ; 9: uhac158, 2022.
Article in English | MEDLINE | ID: mdl-36324644

ABSTRACT

Herbivore-induced plant volatiles (HIPVs) help the tea plant (Camellia sinensis) adapt to environmental stress, and they are also quality-related components of tea. However, the upstream mechanism regulating the herbivore-induced expression of volatile biosynthesis genes is unclear, especially at the level of epigenetic regulation. In this study, similar to the effects of a tea green leafhopper infestation, treatments with exogenous jasmonic acid (JA) and histone deacetylase inhibitors significantly increased the (E)-nerolidol content in tea and induced the expression of the associated biosynthesis gene CsNES. Furthermore, a key transcription factor related to JA signaling, myelocytomatosis 2 (CsMYC2), interacted with histone deacetylase 2 (CsHDA2) in vitro and in vivo. A tea green leafhopper infestation inhibited CsHDA2 expression and decreased CsHDA2 abundance. Moreover, the tea green leafhopper infestation increased H3 and H4 acetylation levels in the promoter region of CsNES, which in turn upregulated the expression of CsNES and increased the (E)-nerolidol content. In this study, we revealed the effects of histone acetylations on the accumulation of HIPVs, while also confirming that CsHDA2-CsMYC2 is an important transcriptional regulatory module for the accumulation of (E)-nerolidol induced by tea green leafhoppers. The results of this study may be useful for characterizing plant aromatic compounds and the main upstream stress-responsive signaling molecules. Furthermore, the study findings will assist researchers clarify the epigenetic regulation influencing plant secondary metabolism in response to external stress.

8.
Opt Express ; 30(22): 39582-39596, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298906

ABSTRACT

Recently, deep reinforcement learning (DRL) for metasurface design has received increased attention for its excellent decision-making ability in complex problems. However, time-consuming numerical simulation has hindered the adoption of DRL-based design method. Here we apply the Deep learning-based virtual Environment Proximal Policy Optimization (DE-PPO) method to design the 3D chiral plasmonic metasurfaces for flexible targets and model the metasurface design process as a Markov decision process to help the training. A well trained DRL agent designs chiral metasurfaces that exhibit the optimal absolute circular dichroism value (typically, ∼ 0.4) at various target wavelengths such as 930 nm, 1000 nm, 1035 nm, and 1100 nm with great time efficiency. Besides, the training process of the PPO agent is exceptionally fast with the help of the deep neural network (DNN) auxiliary virtual environment. Also, this method changes all variable parameters of nanostructures simultaneously, reducing the size of the action vector and thus the output size of the DNN. Our proposed approach could find applications in efficient and intelligent design of nanophotonic devices.


Subject(s)
Algorithms , Neural Networks, Computer , Computer Simulation , Policy
9.
Plant Physiol Biochem ; 190: 24-34, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36088784

ABSTRACT

Dendrobium officinale, which is a medicine food homology plant, contains many metabolites, especially polysaccharides and flavonoids. Unlike flowers and stems, which are the most frequently harvested organs for a variety of uses, leaves tend to be discarded. This study assessed main metabolites in leaves to identify the most appropriate timing of collection during harvest, which was divided into three stages (S1-S3: 8, 10, and 11 months after sprouting, respectively). Metabolomic and transcriptomic analyses of S1-S3 were performed. Water-soluble polysaccharides (WSPs), flavonoids and free amino acids (FAAs) were detected in leaves. WSPs decreased from S1 to S3 but flavonoids and some FAAs (e.g., phophoserine) increased from S1 to S2, then decreased from S2 to S3. In all three stages, mannose was the dominant monosaccharide among WSPs, followed by glucose. In S2, 35 flavonoids were identified, the most abundant being rutin, schaftoside and vitexin, while 34 FAAs were identified in all three stages, the most abundant being tyrosine, phosphoserine and alanine. A total of 2584, 3414 and 2032 differentially expressed genes (DEGs) were discovered in S1 vs S2, S1 vs S3 and S1 vs S3, respectively. Correlation analysis revealed that five DEGs (DoSUS, DoXYLA, DoFRK, DoGMP, and DoCSLA), two DEGs (DoDFR, and DoANS) and a single DEG (DoPGAM) were involved in the metabolism of WSPs, flavonoids and phosphoserine, respectively. The findings of this study lay a foundation for the commercial exploitation of metabolites in the harvested leaves of D. officinale, and the use of detected DEGs in applied genetic studies.


Subject(s)
Dendrobium , Alanine/metabolism , Dendrobium/genetics , Dendrobium/metabolism , Flavonoids/metabolism , Glucose/metabolism , Mannose/metabolism , Monosaccharides/metabolism , Phosphoserine/metabolism , Polysaccharides/metabolism , Rutin/metabolism , Transcriptome , Tyrosine/metabolism , Water/metabolism
10.
Opt Express ; 30(9): 15596-15606, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35473276

ABSTRACT

Due to the small core diameter, a single-core multimode fiber (MMF) has been extensively investigated for endoscopic imaging. However, an extra light path is always utilized for illumination in MMF imaging system, which takes more space and is inapplicable in practical endoscopy imaging. In order to make the imaging system more practical and compact, we proposed a dual-function MMF imaging system, which can simultaneously transmit the illumination light and the images through the same imaging fiber. Meanwhile, a new deep learning-based encoder-decoder network with full-connected (FC) layers was designed for image reconstruction. We conducted an experiment of transmitting images via a 1.6 m long MMF to verify the effectiveness of the dual-function MMF imaging system. The experimental results show that the proposed network achieves the best reconstruction performance compared with the other four networks on different datasets. Besides, it is worth mentioning that the cropped speckle patterns can still be used to reconstruct the original images, which helps to reduce the computing complexity significantly. We also demonstrated the ability of cross-domain generalization of the proposed network. The proposed system shows the potential for more compact endoscopic imaging without external illumination.

11.
Protoplasma ; 259(3): 641-657, 2022 May.
Article in English | MEDLINE | ID: mdl-34251532

ABSTRACT

Mannan polysaccharides (MPs), which contain substituted O-acetyl groups in their backbone, are abundant in the medicinal plant Dendrobium officinale. Acetyl groups can influence the physiological and biochemical properties of polysaccharides, which mainly accumulate in the stems of D. officinale at four developmental stages (S1-S4), showing an increasing trend and a link with water-soluble polysaccharides (WSPs) and mannose. The genes coding for enzymes that catalyze O-acetyl groups to MPs are unknown in D. officinale. The TRICHOME BIREFRINGENCE-LIKE (TBL) gene family contains TBL and DUF231 domains that can transfer O-acetyl groups to various polysaccharides. Based on an established D. officinale genome database, 37 DoTBL genes were identified. Analysis of cis-elements in the promoter region showed that DoTBL genes might respond to different hormones and abiotic stresses. Most of the genes with MeJA-responsive elements were upregulated or downregulated after treatment with MeJA. qRT-PCR results demonstrated that DoTBL genes had significantly higher expression levels in stems and leaves than in roots. Eight DoTBL genes showed relatively higher expression at S2-S4 stages, which showed a link with the content of WSPs and O-acetyl groups. DoTBL35 and its homologous gene DoTBL34 displayed the higher mRNA level in different organs and developmental stages, which might participate in the acetylation of MPs in D. officinale. The subcellular localization of DoTBL34 and DoTBL35 reveals that the endoplasmic reticulum may play an important role in the acetylation of MPs.


Subject(s)
Dendrobium , Dendrobium/chemistry , Genes, Synthetic , Mannans/analysis , Mannans/metabolism , Plant Leaves/metabolism , Polysaccharides/metabolism
12.
Ecotoxicol Environ Saf ; 229: 113057, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34883325

ABSTRACT

Cadmium (Cd) has toxic effects on plants. Nitrogen (N), an essential element, is critical for plant growth, development and stress response. However, their combined effects on woody plants, especially in N-fixing tree species is still poorly understood. Our previous study revealed that the fast-growing Acacia auriculiformis showed strong Cd tolerance but the underlying mechanisms was not clear, which constrained its use in mine land reclamation. Herein, we investigated the physiological and proteomic changes in A. auriculiformis leaves to reveal the mechanisms of Cd tolerance and toxicity without N fertilizer (treatment Cd) and with excess N fertilizer (treatment CdN). Results showed that Cd tolerance in A. auriculiformis was closely associated with the coordinated gas exchange and antioxidant defense reactions under Cd treatment alone. Exogenous excessive N, however, inhibited plant growth, increased Cd concentrations, and weaken photosynthetic performance, thus, aggregated the toxicity under Cd stress. Furthermore, the aggregated Cd toxicity was attributed to the depression in the abundance of proteins, as well as their corresponding genes, involved in photosynthesis, energy metabolism (oxidative phosphorylation, carbon metabolism, etc.), defense and stress response (antioxidants, flavonoids, etc.), plant hormone signal transduction (MAPK, STN, etc.), and ABC transporters. Collectively, this study unveils a previously unknown physiological and proteomic network that explains N diminishes Cd detoxification in A. auriculiformis. It may be counterproductive to apply N fertilizer to fast-growing, N-fixing trees planted for phytoremediation of Cd-contaminated soils.


Subject(s)
Acacia , Cadmium , Cadmium/toxicity , Nitrogen , Photosynthesis , Plant Leaves , Proteomics
13.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069261

ABSTRACT

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Subject(s)
Dendrobium/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Dendrobium/growth & development , Gene Expression Regulation, Plant , Genome-Wide Association Study , Multigene Family , Phylogeny , Plant Leaves/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Interaction Maps , Regulatory Sequences, Nucleic Acid , Stress, Physiological/genetics , Nicotiana/genetics , Transcription Factors/metabolism
14.
Biomolecules ; 11(5)2021 05 15.
Article in English | MEDLINE | ID: mdl-34063498

ABSTRACT

Dendrobium officinale Kimura et Migo is a precious traditional Chinese medicine. Despite D. officinale displaying a good salt-tolerance level, the yield and growth of D. officinale were impaired drastically by the increasing soil secondary salinization. The molecular mechanisms of D. officinale plants' adaptation to salt stress are not well documented. Therefore, in the present study, D. officinale plants were treated with 250 mM NaCl. Transcriptome analysis showed that salt stress significantly altered various metabolic pathways, including phenylalanine metabolism, flavonoid biosynthesis, and α-linolenic acid metabolism, and significantly upregulated the mRNA expression levels of DoAOC, DoAOS, DoLOX2S, DoMFP, and DoOPR involved in the jasmonic acid (JA) biosynthesis pathway, as well as rutin synthesis genes involved in the flavonoid synthesis pathway. In addition, metabolomics analysis showed that salt stress induced the accumulation of some compounds in D. officinale leaves, especially flavonoids, sugars, and alkaloids, which may play an important role in salt-stress responses of leaf tissues from D. officinale. Moreover, salt stress could trigger JA biosynthesis, and JA may act as a signal molecule that promotes flavonoid biosynthesis in D. officinale leaves. To sum up, D. officinale plants adapted to salt stress by enhancing the biosynthesis of secondary metabolites.


Subject(s)
Cyclopentanes/metabolism , Dendrobium/physiology , Flavonoids/metabolism , Oxylipins/metabolism , Biosynthetic Pathways , Dendrobium/genetics , Dendrobium/growth & development , Dendrobium/metabolism , Metabolome , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Salt Stress , Transcriptome
15.
Plant Sci ; 309: 110952, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34134848

ABSTRACT

Linalool is an aromatic monoterpene produced in the Chinese medicinal plant Dendrobium officinale, but little information is available on the regulation of linalool biosynthesis. Here, a novel basic helix-loop-helix (bHLH) transcription factor, DobHLH4 from D. officinale, was identified and functionally characterized. The expression profile of DobHLH4 was positively correlated with that of DoTPS10 (R2 = 0.985, p < 0.01), which encodes linalool synthase that is responsible for linalool production, during floral development. DobHLH4 was highly expressed in petals, and was significantly induced by methyl jasmonate. Analysis of subcellular localization showed that DobHLH4 was located in the nucleus. Yeast one-hybrid and dual-luciferase assays indicated that DobHLH4 bound directly to the DoTPS10 promoter harboring the G-box element, and up-regulated DoTPS10 expression. A yeast two-hybrid screen confirmed that DobHLH4 physically interacted with DoJAZ1, suggesting that DobHLH4 might function in the jasmonic acid-mediated accumulation of linalool. Furthermore, transient overexpression of DobHLH4 in D. officinale petals significantly increased linalool production by triggering linalool biosynthetic pathway genes, especially DoTPS10. We suggest a hypothetical model that depicts how jasmonic acid signaling may regulate DoTPS10 by interacting with DobHLH4 and DoJAZ1. In doing so, the formation of linalool is controlled. Our results indicate that DobHLH4 is a positive regulator of linalool biosynthesis and may be a promising target for in vitro-based metabolic engineering to produce linalool.


Subject(s)
Acetates/metabolism , Acyclic Monoterpenes/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cyclopentanes/metabolism , Dendrobium/genetics , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Biosynthetic Pathways , Dendrobium/chemistry , Dendrobium/metabolism , Flowers/chemistry , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Oils, Volatile/metabolism , Plant Oils/metabolism , Plant Proteins/genetics
16.
Opt Express ; 29(5): 6657-6667, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726182

ABSTRACT

We propose a polarization dependent loss (PDL) and chromatic dispersion (CD) insensitive, low-complexity adaptive equalizer (AEQ) for short-reach coherent optical transmission systems. The AEQ contains a 1-tap butterfly finite impulse response (FIR) filter and two N-tap FIR filters. It first performs polarization demultiplexing using the 1-tap filter, of which the coefficients are obtained based on Stokes space. Then it mitigates the inter-symbol interference (ISI) using the two N-tap finite impulse response (FIR) filters and adjust the filter's coefficients by utilizing constant modulus algorithm (CMA). Through theoretical and experimental analysis, we verify that this proposed AEQ can perform robust polarization demultiplexing when PDL and CD exists. Besides, our proposed AEQ has faster convergence speed compared with recently proposed AEQs. In addition, it reduces the number of multipliers and thus reduce the computational complexity of conventional butterfly filter structure AEQ. And this proposed AEQ suffers little bit error ratio loss compared with the conventional AEQ. Due to the low-complexity and robustness to PDL and CD, this proposed AEQ is well-suited for future low-cost short-reach optical communication system.

17.
J Plant Physiol ; 258-259: 153356, 2021.
Article in English | MEDLINE | ID: mdl-33423816

ABSTRACT

Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.


Subject(s)
Gene Expression , Genes, Plant , Orchidaceae/genetics , Plant Proteins/genetics , Dendrobium/genetics , Dendrobium/metabolism , Gene Expression Profiling , Orchidaceae/metabolism , Plant Proteins/metabolism , Salt Stress/genetics
18.
BMC Plant Biol ; 21(1): 21, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407149

ABSTRACT

BACKGROUND: DNA methylation is a conserved and important epigenetic modification involved in the regulation of numerous biological processes, including plant development, secondary metabolism, and response to stresses. However, no information is available regarding the identification of cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes in the orchid Dendrobium officinale. RESULTS: In this study, we performed a genome-wide analysis of DoC5-MTase and DodMTase gene families in D. officinale. Integrated analysis of conserved motifs, gene structures and phylogenetic analysis showed that eight DoC5-MTases were divided into four subfamilies (DoCMT, DoDNMT, DoDRM, DoMET) while three DodMTases were divided into two subfamilies (DoDML3, DoROS1). Multiple cis-acting elements, especially stress-responsive and hormone-responsive ones, were found in the promoter region of DoC5-MTase and DodMTase genes. Furthermore, we investigated the expression profiles of DoC5-MTase and DodMTase in 10 different tissues, as well as their transcript abundance under abiotic stresses (cold and drought) and at the seedling stage, in protocorm-like bodies, shoots, and plantlets. Interestingly, most DoC5-MTases were downregulated whereas DodMTases were upregulated by cold stress. At the seedling stage, DoC5-MTase expression decreased as growth proceeded, but DodMTase expression increased. CONCLUSIONS: These results provide a basis for elucidating the role of DoC5-MTase and DodMTase in secondary metabolite production and responses to abiotic stresses in D. officinale.


Subject(s)
DNA Methylation/genetics , DNA-Cytosine Methylases/genetics , Dendrobium/enzymology , Dendrobium/genetics , Oxidoreductases/genetics , Polysaccharides/genetics , Polysaccharides/metabolism , Arabidopsis/genetics , DNA-Cytosine Methylases/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genome-Wide Association Study , Oryza/genetics , Oxidoreductases/metabolism
19.
Protoplasma ; 258(4): 803-815, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33404922

ABSTRACT

Flavonols are important active ingredients that are found in abundance in Dendrobium officinale. Research on flavonol biosynthesis currently focuses on the more ubiquitous kaempferol and quercetin, but little is known on the biosynthesis of myricetin. Notably, flavonol synthase (FLS), which is responsible for the biosynthesis of flavonols, has not yet been identified. In this study, we isolated a flavonol synthase, DoFLS1, from Dendrobium officinale. DoFLS1 harbors conserved 2-oxoglutarate-dependent dioxygenase-specific and FLS-specific motifs. DoFLS1 is a cytoplasmic protein. DoFLS1 was universally expressed in roots, stems, and leaves of juvenile and adult D. officinale plants. DoFLS1 expression was strongly correlated in juvenile and adult D. officinale plants (R2 = 0.86 and 0.98, respectively; p < 0.01) with the average of corresponding flavonol levels. Transgenic Arabidopsis thaliana expressing DoFLS1 exhibited a 1.24-fold increase in flavonol content and a 25.78% decrease in anthocyanin content compare to wild-type plants, possibly resulting from a 78.61% increase in myricetin level. Moreover, the loss of anthocyanin was attributed to decreased expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) genes in transgenic A. thaliana that expressed DoFLS1. DoFLS1 also complemented the deficiency in flavonol of the A. thaliana fls1-3 mutant, which had reduced anthocyanin but increased flavonol content relative to the fls1-3 mutant. In addition, DoFLS1 was significantly upregulated after treatment with cold, drought or salicylic acid. These findings provide genetic evidence for the involvement of DoFLS1 in the biosynthesis of flavonol and in response to abiotic stresses.


Subject(s)
Arabidopsis , Dendrobium , Anthocyanins , Arabidopsis/genetics , Dendrobium/genetics , Ectopic Gene Expression , Flavonols , Gene Expression Regulation, Plant , Stress, Physiological/genetics
20.
PeerJ ; 8: e10482, 2020.
Article in English | MEDLINE | ID: mdl-33362966

ABSTRACT

The deacetylation of core histones controlled by the action of histone deacetylases (HDACs) plays an important role in the epigenetic regulation of plant gene transcription. However, no systematic analysis of HDAC genes in Dendrobium officinale, a medicinal orchid, has been performed. In the current study, a total of 14 histone deacetylases in D. officinale were identified and characterized using bioinformatics-based methods. These genes were classified into RPD3/HDA1, SIR2, and HD2 subfamilies. Most DoHDAC genes in the same subfamily shared similar structures, and their encoded proteins contained similar motifs, suggesting that the HDAC family members are highly conserved and might have similar functions. Different cis-acting elements in promoters were related to abiotic stresses and exogenous plant hormones. A transient expression assay in onion epidermal cells by Agrobacterium-mediated transformation indicated that all of the detected histone deacetylases such as DoHDA7, DoHDA9, DoHDA10, DoHDT3, DoHDT4, DoSRT1 and DoSRT2, were localized in the nucleus. A tissue-specific analysis based on RNA-seq suggested that DoHDAC genes play a role in growth and development in D. officinale. The expression profiles of selected DoHDAC genes under abiotic stresses and plant hormone treatments were analyzed by qRT-PCR. DoHDA3, DoHDA8, DoHDA10 and DoHDT4 were modulated by multiple abiotic stresses and phytohormones, indicating that these genes were involved in abiotic stress response and phytohormone signaling pathways. These results provide valuable information for molecular studies to further elucidate the function of DoHDAC genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...