Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Carbohydr Polym ; 334: 122040, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553237

ABSTRACT

Integrating flexible triboelectric nanogenerators (TENGs) into firefighting clothing offers exciting opportunities for wearable portable electronics in personal protective technology. However, it is still a grand challenge to produce eco-friendly TENGs from biodegradable and low-cost natural polymers for mechanical-energy harvesting and self-powered sensing. Herein, conductive polypyrrole (PPy) and natural chitosan (CS)/phytic acid (PA) tribonegative materials were employed onto the Lycra fabric (LC) in turn to assemble the biodegradable and flame-retardant single-electrode mode LC/PPy/CS/PA TENG (abbreviated as LPCP-TENG). The resultant LPCP-TENG exhibits truly wearable breathability (1378.6 mm/s), elasticity (breaking elongation 291 %), and shape adaptivity performance that can produce an open circuit voltage of 0.3 V with 2 N contact pressure at a working frequency of 5 Hz with a limiting oxygen index of 35.2 %. Furthermore, facile monitoring for human motion of firefighters on fireground is verified by LPCP-TENG when used as self-powered flexible tactile sensor. In addition, degradation experiments have shown that waste LPCP-TENG can be fully degraded in soil within 120 days. This work broadens the applicational range of wearable TENG to reduce the environmental effects of abandoned TENG, exhibiting prosperous applications prospects in the field of wearable power source and self-powered motion detection sensor for personal protection application on fireground.


Subject(s)
Chitosan , Flame Retardants , Wearable Electronic Devices , Humans , Cellulose , Polymers , Pyrroles , Phytic Acid , Clothing
2.
Pediatr Crit Care Med ; 25(5): 425-433, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353591

ABSTRACT

OBJECTIVES: To describe the epidemiological characteristics of pediatric sepsis in Southwest China PICUs. DESIGN: A prospective, multicenter, and observational study. SETTING: Twelve PICUs in Southwest China. PATIENTS: The patients admitted to the PICU from April 1, 2022, to March 31, 2023. The age ranged from 28 days to 18 years. All patients met the criteria of severe sepsis or septic shock. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of the 31 PICUs invited to participate, 12 PICUs (capacity of 292 beds) enrolled patients in the study. During the study period, 11,238 children were admitted to the participating PICUs, 367 (3.3%) of whom met the diagnosis of severe sepsis or septic shock. The most prevalent sites of infection were the respiratory system (55%) and the digestive system (15%). The primary treatments administered to these patients included antibiotics (100%), albumin (61.3%), invasive mechanical ventilation (58.7%), glucocorticoids (55.6%), blood products (51%), gammaglobulin (51%), and vasoactive medications (46.6%). Sepsis-related mortality in the PICU was 11.2% (41/367). Nearly half of the sepsis deaths occurred within the first 3 days of PICU admission (22/41, 53.7%). The mortality rate of septic shock (32/167, 19.2%) was significantly higher than that of severe sepsis (9/200, 4.5%; p < 0.001). The outcomes of a multivariate logistic regression analysis suggested that a higher pediatric Sequential Organ Failure Assessment score, and the use of invasive mechanical ventilation and vasoactive medications were independently associated with PICU mortality in children with sepsis. CONCLUSIONS: This report updates the epidemiological data of pediatric sepsis in PICUs in Southwest China. Sepsis is still a life-threatening disease in children.


Subject(s)
Intensive Care Units, Pediatric , Sepsis , Humans , Prospective Studies , Child, Preschool , China/epidemiology , Child , Infant , Male , Female , Adolescent , Intensive Care Units, Pediatric/statistics & numerical data , Sepsis/epidemiology , Infant, Newborn , Hospital Mortality , Shock, Septic/epidemiology
3.
Crit Care ; 28(1): 36, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291524

ABSTRACT

BACKGROUND: Sepsis is a severe condition characterized by acute organ dysfunction resulting from an imbalanced host immune response to infections. Apolipoprotein H (APOH) is a critical plasma protein that plays a crucial role in regulating various biological processes. However, the precise role of APOH in the immunopathology of paediatric sepsis remains unclear. METHODS: In this study, we evaluated the concentration of APOH in paediatric patients with sepsis and healthy individuals. In an experimental sepsis model of caecal ligation and puncture (CLP), the impact of APOH on survival, organ injury, and inflammation was measured. Furthermore, the anti-inflammatory effects of APOH were investigated across diverse immune cell types, encompassing peripheral blood mononuclear cells (PBMCs), peritoneal macrophages (PMs), bone marrow-derived macrophages (BMDMs), and RAW 264.7 macrophages. RESULTS: In the pilot cohort, the relative abundance of APOH was found to be decreased in patients with sepsis (2.94 ± 0.61) compared to healthy controls (1.13 ± 0.84) (p < 0.001), non-survivors had lower levels of APOH (0.50 ± 0.37) compared to survivors (1.45 ± 0.83) (p < 0.05). In the validation cohort, the serum concentration of APOH was significantly decreased in patients with sepsis (202.0 ± 22.5 ng/ml) compared to healthy controls (409.5 ± 182.9 ng/ml) (p < 0.0001). The application of recombinant APOH protein as a therapeutic intervention significantly lowered the mortality rate, mitigated organ injury, and suppressed inflammation in mice with severe sepsis. In contrast, neutralizing APOH with an anti-APOH monoclonal antibody increased the mortality rate, exacerbated organ injury, and intensified inflammation in mice with non-severe sepsis. Intriguingly, APOH exhibited minimal effects on the bacterial burden, neutrophil, and macrophage counts in the sepsis mouse model, along with negligible effects on bacterial phagocytosis and killing during Pseudomonas aeruginosa infection in PMs, RAW 264.7 cells, and PBMCs. Mechanistic investigations in PMs and RAW 264.7 cells revealed that APOH inhibited M1 polarization in macrophages by suppressing toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalling pathway. CONCLUSION: This proof-of-concept study demonstrated that APOH has a protective role in the host defense response to sepsis, highlighting the potential therapeutic value of APOH in sepsis treatment.


Subject(s)
Leukocytes, Mononuclear , Sepsis , Animals , Child , Humans , Mice , beta 2-Glycoprotein I , Inflammation , Leukocytes, Mononuclear/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Phagocytosis , Apolipoproteins/metabolism
4.
Anal Chem ; 95(48): 17699-17707, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37971750

ABSTRACT

Detection of viral infections (e.g., SARS-CoV-2) with high precision is critical to disease control and treatment. There is an urgent need to develop point-of-care detection methods to complement the gold standard laboratory-based PCR assay with comparable sensitivity and specificity. Herein, we developed a method termed mCAD to achieve ultraspecific point-of-care detection of SARS-CoV-2 RNA while maintaining high sensitivity by programming multiplex rolling circle amplification and toehold-mediated strand displacement reactions. RCA offers sufficient amplification of RNA targets for subsequent detection. Most importantly, a multilayer of detection specificity is implemented into mCAD via sequence-specific hybridization of nucleic acids across serial steps of this protocol to fully eliminate potential false-positive detections. Using mCAD, we demonstrated a highly specific, sensitive, and convenient visual detection of SARS-CoV-2 RNA from both synthetic and clinical samples, exhibiting performance comparable to qPCR. We envision that mCAD will find its broad applications in clinical prospects for nucleic acid detections readily beyond SARS-CoV-2 RNA.


Subject(s)
RNA, Viral , SARS-CoV-2 , RNA, Viral/genetics , SARS-CoV-2/genetics , Nucleic Acid Hybridization , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods
5.
Nanomicro Lett ; 15(1): 226, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831274

ABSTRACT

Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground. However, it is still a challenge to facilely design and manufacture thermoelectric (TE) textile (TET)-based fire warning electronics with dynamic surface conformability and breathability. Here, we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti3C2Tx MXene and p-type MXene/SWCNT-COOH as core materials, and tough aramid nanofiber as protective shell, which simultaneously ensure the flexibility and high-efficiency TE power generation. With such alternating p/n-type TE fibers, TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric. The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300 °C. The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature. The fire alarm response time and flame-retardant properties are further displayed. Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement, demonstrating their potential application in firefighting clothing.

6.
Macromol Biosci ; 23(11): e2300233, 2023 11.
Article in English | MEDLINE | ID: mdl-37483109

ABSTRACT

In this study, lacquer is gathered from a lacquer tree and rotary evaporation is used to remove impurities to obtain urushiol. Next, 10 mL of anhydrous ethanol serves as the solvent for blending polyvinylpyrrolidone (PVP) at a specified content (0.7 g and 0.2-0.7 g urushiol) to form an electrospinning solution. Electrospinning is carried out with a voltage of 18 kV to prepare PVP/urushiol nanofibrous membranes. At a ratio of 7/4, the PVP/urushiol nanofibrous membranes are not eroded in 98% sulfuric acid and these membranes also demonstrate a 50-60% antibacterial effect against Staphylococcus aureus and Escherichia coli. Moreover, the antibacterial effect can be boosted to 98% with the incorporation of zinc ions. The results indicate that anhydrous ethanol can remove the sensitization of urushiol from PVP/urushiol membranes. Furthermore, animal test results indicate that when rats are in contact with PVP/urushiol anhydrous ethanol for 48 h, their skins are free from dark brown skin allergy. The presence of PVP eliminates the sensitization of urushiol, and the nanofibrous membranes demonstrate low toxicity. Hence, urushiol is the only natural material that enables PVP to withstand 98% sulfuric acid as well as acquire hydrolyzability, thereby qualify PVP as a medical material.


Subject(s)
Nanofibers , Povidone , Rats , Animals , Povidone/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Zinc/pharmacology , Escherichia coli , Ethanol/pharmacology
7.
Biosens Bioelectron ; 237: 115526, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37453279

ABSTRACT

The detection of SARS-CoV-2 infection is crucial for effective prevention and surveillance of COVID-19. In this study, we report the development of a novel detection assay named CENSOR that enables sensitive and specific detection of SARS-CoV-2 RNA using a plasmonic chiral biosensor in combination with CRISPR-Cas13a. The chiral biosensor was designed by assembling gold nanorods (AuNR) into three-dimensional plasmonic architectures of controllable chirality on a DNA origami template. This modular assembly mode enhances the flexibility and adaptability of the sensor, thereby improving its universality as a sensing platform. In the presence of SARS-CoV-2 RNA, the CRISPR-Cas13a enzyme triggers collateral cleavage of RNA molecules, resulting in a differential chiral signal readout by the biosensor compared to when there are no RNA targets present. Notably, even subtle variations in the concentration of SARS-CoV-2 RNA can provoke significant changes in chiral signals after preamplification of RNA targets (calculated LOD: 0.133 aM), which establishes the foundation for quantitative detection. Furthermore, CENSOR demonstrated high sensitivity and accuracy in detecting SARS-CoV-2 RNA from clinical samples, suggesting its potential application in clinical settings for viral detection beyond SARS-CoV-2.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Clustered Regularly Interspaced Short Palindromic Repeats
8.
Front Nutr ; 9: 758762, 2022.
Article in English | MEDLINE | ID: mdl-35308293

ABSTRACT

Background: The milk fat globule membrane (MFGM), a tri-layer membrane structure surrounding the milk fat globule, has been shown to have immune-modulating properties. This study aimed to investigate the effects of MFGM supplementation in a rat model of short bowel syndrome (SBS) associated liver disease and its possible mechanisms. Materials and Methods: Twenty one male Sprague-Dawley rats were randomly divided into three groups: Sham, SBS (underwent massive small bowel resection), and SBS+MFGM (SBS rats supplemented with 1.5 g/kg/d MFGM). Liver pathology, myeloperoxidase (MPO) staining, serum levels of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), endotoxin concentration, protein expression of autophagy and nucleotide binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) pathway in the liver tissue were measured. Results: Both SBS and SBS + MFGM groups had higher serum levels of ALT and liver endotoxin levels than the Sham group (P < 0.05), with no difference detected between each other. Compared with the SBS group, the SBS+MFGM group showed lower liver pathology scores of steatosis and inflammation, less MPO positive cells and reduced expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, interleukin (IL)-1ß(P < 0.05) in the liver. Additionally, the expression of Beclin-1 and microtubule-associated protein1 light chain 3(LC3) B, the fluorescence intensity of NLRP3 and LC3B in the SBS + MFGM group were lower than the SBS group (P < 0.05). The LC3B expression was positively correlated with the NLRP3 level. Conclusion: Enteral supplementation of MFGM help to alleviate liver injury in SBS rats, which might be related to inhibition of aberrant activation of autophagy and NLRP3 inflammasome pathways.

9.
ACS Nano ; 16(2): 2953-2967, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35084187

ABSTRACT

Firefighting protective clothing is an essential equipment that can protect firefighters from burn injuries during the firefighting process. However, it is still a challenge to detect the damage of firefighting protective clothing at an early stage when firefighters are exposed to excessively high temperature in fire cases. Herein, an ultralight self-powered fire alarm electronic textile (SFA e-textile) based on conductive aerogel fiber that comprises calcium alginate (CA), Fe3O4 nanoparticles (Fe3O4 NPs), and silver nanowires (Ag NWs) was developed, which achieved ultrasensitive temperature monitoring and energy harvesting in firefighting clothing. The resulting SFA e-textile was integrated into firefighting protective clothing to realize wide-range temperature sensing at 100-400 °C and repeatable fire warning capability, which could timely transmit an alarm signal to the wearer before the firefighting protective clothing malfunctioned in extreme fire environments. In addition, a self-powered fire self-rescue location system was further established based on the SFA e-textile that can help rescuers search and rescue trapped firefighters in fire cases. The power in the self-powered fire location system was offered by an SFA e-textile-based triboelectric nanogenerator (TENG). This work provided a useful design strategy for the preparation of ultralight wearable temperature-monitoring SFA e-textile used in firefighting protective clothing.


Subject(s)
Firefighters , Heart Rate , Humans , Protective Clothing , Temperature , Textiles
10.
Carbohydr Polym ; 269: 118291, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294317

ABSTRACT

Bio-based aerogel (polysaccharide cryogel) have led to a growing interest because of eco-friendliness, sustainability and excellent thermal insulation properties. Herein, we report an eco-friendly strategy to construct lightweight and porous sodium alginate/carboxymethyl cellulose/chitosan polysaccharide-based composite aerogels (SCC-B) by freeze-drying and post-cross-linking technology. The ester cross-linking of polysaccharide component achieved strong web-like entangled structure when using 1,2,3,4-butanetetracarboxylic acid and sodium hypophosphite as eco-friendly co-additives, meanwhile significantly improved flame retardancy of SCC-B due to phosphorylation. The thermal kinetic behavior of SCC-B was investigated by Flynn-Wall-Ozawa and Kissinger models. Results indicated that peak heat release rate and total heat release of SCC-B decreased from 30 W/g to 20 W/g and 15 kJ/g to 10 kJ/g, respectively. Furthermore, the second-degree burn time of SCC-B reached up to 87.1 s under heat exposure of 11.3 kW/m2. These characteristics combine to suggest hopeful prospects for use of SCC-B in the fields of fire-protection clothing as a renewable flame-retardant material.


Subject(s)
Alginates/chemistry , Carboxymethylcellulose Sodium/chemistry , Chitosan/chemistry , Cryogels/chemistry , Flame Retardants , Alginates/chemical synthesis , Alginates/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carboxymethylcellulose Sodium/chemical synthesis , Carboxymethylcellulose Sodium/pharmacology , Chitosan/chemical synthesis , Chitosan/pharmacology , Compressive Strength , Cryogels/chemical synthesis , Cryogels/pharmacology , Escherichia coli/drug effects , Flame Retardants/chemical synthesis , Flame Retardants/pharmacology , Kinetics , Materials Testing , Microbial Sensitivity Tests , Porosity , Staphylococcus aureus/drug effects , Thermal Conductivity
11.
Carbohydr Polym ; 255: 117485, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436245

ABSTRACT

A novel fire-preventing triple-network (TN) hydrogel was prepared and laminated on cotton fabric to improve fire-resistant performance of cellulose fabric. The TN hydrogel composed of Poly (N-isopropylacrylamide) (PNIPAAm)/sodium alginate (SA)/ Poly (vinyl alcohol) (PVA) exhibited excellent swelling ratio, swelling-deswelling behavior and antibacterial property. Results indicated that introduction of SA could improve water retention capabilities of TN hydrogels. Thermogravimetric experiments showed that the thermal stability of hydrogels was best at a SA: PVA ratio of 2:1. Furthermore, the obtained hydrogel-cotton fabric laminates displayed efficient flame retardancy. Compared to original fabric, hydrogel-fabric laminates were nearly undamaged when exposed to fire for 12 s. This result is attributed to energy absorption as water is heated and evaporates in the hydrogel. The present work provides a new concept to prepare fire-resistant polymer fabric, which may be used in fire-protective clothing to protect the skin from burn injuries.

12.
JPEN J Parenter Enteral Nutr ; 45(5): 916-925, 2021 07.
Article in English | MEDLINE | ID: mdl-32614456

ABSTRACT

BACKGROUND: Clinical research reveals that colon plays an important role in mitigating the effects of short-bowel syndrome (SBS). Previously, we showed that the milk fat globule membrane (MFGM) had protective effects on gut barrier integrity in the rat SBS model. Here, we used the same rat model to investigate the effects of enteral MFGM supplementation on gut microbiota and colonic-mucus-barrier function and its related mechanisms. METHODS: We randomly divided 24 male Sprague-Dawley rats into 3 groups: Sham, SBS (rats with massive small-bowel resection), and SBS+MFGM (SBS rats supplemented with 1.5 g/kg/d MFGM). We then evaluated gut permeability, crypt depth, goblet-cell count, mucin 1 (MUC1), mucin 2 (MUC2), microbiota, short-chain fatty acids, and protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 6 (NLRP6) pathway of the colon. RESULTS: Compared with SBS rats, SBS+MFGM rats exhibited lower intestinal permeability, increased crypt depth, more goblet cells, and more MUC1/MUC2-positive cells. The SBS+MFGM group also had greater Firmicutes abundance and lower acetate concentration (P < .05). Sham rats had significantly lower Bacteroidetes abundance than SBS rats, but SBS+MFGM and SBS groups did not differ. Additionally, the SBS+MFGM group had higher NLRP6 and interleukin (IL)-18 expression but lower IL-1ß and Caspase-1 (cysteinyl aspartate-specific protease-1) expression than the SBS group (P < .05). CONCLUSION: Supplementation of MFGM modulates gut microbiota composition in SBS, possibly through strengthening the colonic mucus barrier and regulation of NLRP6 inflammasome.


Subject(s)
Intestinal Mucosa , Short Bowel Syndrome , Animals , Glycolipids , Glycoproteins , Lipid Droplets , Male , Mucus , Rats , Rats, Sprague-Dawley , Receptors, Angiotensin , Receptors, Vasopressin
SELECTION OF CITATIONS
SEARCH DETAIL
...