Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioeng Transl Med ; 8(4): e10430, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476070

ABSTRACT

Although immunotherapy has improved the clinical treatment of lung adenocarcinoma (LUAD), many tumors have poor responses to immunotherapy. In this study, we confirmed that high expression of Cyclin-Dependent Kinase 7 (CDK7) promoted an immunosuppressive macrophage phenotype and macrophage infiltration in LUAD. Thus, we have developed an internalizing-RGD (iRGD)-conjugated gold nanoparticle (AuNP) system which carries siCDK7 to activate the antitumor immune response. The iRGD-conjugated AuNP/siCDK7 system exhibited good tumor targeting performance and photothermal effects. The AuNP/siCDK7 system with excellent biosafety exerted a significant photothermal antitumor effect by inducing tumor cell necroptosis. Furthermore, the AuNP/siCDK7 system ameliorated the immunosuppressive microenvironment and enhanced the efficacy of anti-PD-1 treatment by increasing CD8+ T cell infiltration and decreasing M2 macrophage infiltration. Hence, this iRGD-conjugated AuNP/siCDK7 system is a potential treatment strategy for lung adenocarcinoma, which exerts its effects by triggering tumor cell necroptosis and immunotherapeutic responses.

2.
J Pharm Biomed Anal ; 220: 114984, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-35994945

ABSTRACT

A simple, rapid, sensitive and specific LC-MS/MS method was developed and validated for the quantitative determination of doxylamine in human plasma, using isotope doxylamine-d5 as internal standard (IS). The detection was conducted on a QTRAP 5500 tandem mass spectrometer coupled with electrospray ionization (ESI) source in positive ion mode. Quantification was achieved by positive electrospray ionization containing multiple reaction monitoring (MRM) transitions of m/z 271.0→182.0 for doxylamine and m/z 276.2→187.3 for IS. The mobile phase A was methanol, and mobile phase B was 20 mM ammonium acetate (0.2 % formic acid) in water, using a gradient elution procedure at a flow rate of 0.6 mL/min. The method was validated with a sensitivity of 0.500 ng/mL and a linear concentration range of 0.500-200 ng/mL. The inter-batch precision (%CV) was less than 5.4 %, and the accuracy deviation (%RE) ranged from - 10.6 % to 3.7 %; the inter-batch precision (%CV) was less than 6.6 %, and the accuracy deviation (%RE) was ranged from - 2.7 % to 0.1 %. The selectivity, sensitivity, extraction recovery, matrix effect, carryover, dilution reliability, stability and other characteristics were within the acceptable range. This validated method was successfully applied to a bioequivalence study that orally administered 25 mg of doxylamine succinate tablets in 60 healthy Chinese volunteers.


Subject(s)
Doxylamine/blood , Doxylamine/pharmacokinetics , Histamine H1 Antagonists/blood , Histamine H1 Antagonists/pharmacokinetics , Tandem Mass Spectrometry/methods , Administration, Oral , China , Chromatography, Liquid/methods , Doxylamine/administration & dosage , Healthy Volunteers , Histamine H1 Antagonists/administration & dosage , Humans , Methanol , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization , Tablets , Therapeutic Equivalency
3.
Article in English | MEDLINE | ID: mdl-35063863

ABSTRACT

A rapid, simple, and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was validated for the determination of terbinafine concentrations in the plasma of healthy Chinese subjects. Terbinafine-d7 was used as the internal standard (IS), and the acetonitrile protein precipitation method was selected. The processed samples were chromatographically separated with a C18 column. The mobile phases were 0.1% formic acid (FA) in water (A), and methanol (B), respectively, and the gradient elution program was used with a flow rate of 0.8 mL/min. Quantification was achieved by positive electrospray ionization containing multiple reaction monitoring (MRM) transitions of m/z 292.5 â†’ 141.1 for terbinafine and m/z 299.5 â†’ 148.1 for IS. The calibration curve range was 2.00-1200 ng/mL; the intra- and inter-batch precision (coefficient of variation, %CV) was <8.2%, with the accuracy deviation (relative error, %RE) of -6.5% to 10.2%. The selectivity, sensitivity, extraction recovery, matrix effect, dilution reliability, carryover, and stability were within the acceptable range. This method was successfully applied to a bioequivalence study that orally administered 125 mg of terbinafine hydrochloride tablets in 84 healthy Chinese subjects.


Subject(s)
Antifungal Agents/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Terbinafine/pharmacokinetics , Adolescent , Adult , Antifungal Agents/administration & dosage , Antifungal Agents/blood , China , Female , Healthy Volunteers , Humans , Male , Middle Aged , Terbinafine/administration & dosage , Terbinafine/blood , Therapeutic Equivalency , Young Adult
4.
Ann Transl Med ; 9(20): 1546, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34790752

ABSTRACT

BACKGROUND: Current prediction models of esophageal cancer (EC) are limited to predicting at a specific time point, and ignore changes in hazard ratios of predictive variables, known as time-varying effects. Our study aimed to investigate variables with time-varying effects in EC and to develop a prediction model that can update the 5-year predicted dynamic overall survival (DOS) probability during the follow-up period. METHODS: Firstly, the clinicopathological information and survival data of 4,541 patients with EC was obtained from the Surveillance, Epidemiology, and End Results (SEER) database between 2007 and 2011 for modeling. Secondly, the time-varying effect of variables was assessed and the dynamic prediction model was developed based on the proportional baselines landmark supermodel. RESULTS: Here, we found that age at diagnosis, sex, location of primary tumor, histological type, chemotherapy, surgery, and T stage showed significant time-varying effects on overall survival. Thirdly, the prediction model was validated by an internal SEER validation cohort and a Chinese patient cohort, respectively, and achieved promising results as follows: area under the curve (AUC) =0.733 (internal validation) and 0.864 (external validation). The heuristic shrinkage factor was 0.995. Finally, several clear cases were selected as examples for model application to map the patient's 5-year DOS curves and to respectively demonstrate the impact of different variables' time-varying effect on survival. CONCLUSIONS: Overall, our results suggest that the existence of time-varying effect highlights the importance of updating the predicted survival probability during the follow-up period. Moreover, this prediction model can be used to assist doctors in making more-individualized treatment decisions based on a dynamic assessment of patient prognosis.

5.
Cell Death Dis ; 12(7): 639, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162830

ABSTRACT

Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p-SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p-SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , Stomach Neoplasms/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , RNA, Circular/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Burden , Up-Regulation
6.
Carbohydr Polym ; 268: 118237, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34127219

ABSTRACT

The application of traditional chemotherapy drugs for lung cancer has obvious limitations, such as toxic side effects, uncontrolled drug-release, poor bioavailability, and drug-resistance. Thus, to address the limitations of free drugs and improve treatment effects, we developed novel T7 peptide-modified nanoparticles (T7-CMCS-BAPE, CBT) based on carboxymethyl chitosan (CMCS), which is capable of targeted binding to the transferrin receptor (TfR) expressed on lung cancer cells and precisely regulating drug-release according to the pH value and reactive oxygen species (ROS) level. The results showed that the drug-loading content of docetaxel (DTX) and curcumin (CUR) was approximately 7.82% and 6.48%, respectively. Good biosafety was obtained even when the concentration was as high as 500 µg/mL. More importantly, the T7-CMCS-BAPE-DTX/CUR (CBT-DC) complexes exhibited better in vitro and in vivo anti-tumor effects than DTX monotherapy and other nanocarriers loaded with DTX and CUR alone. Furthermore, we determined that CBT-DC can ameliorate the immunosuppressive micro-environment to promote the inhibition of tumor growth. Collectively, the current findings help lay the foundation for combinatorial lung cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Curcumin/therapeutic use , Docetaxel/therapeutic use , Drug Carriers/chemistry , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Chitosan/analogs & derivatives , Chitosan/metabolism , Chitosan/pharmacokinetics , Chitosan/toxicity , Curcumin/chemistry , Curcumin/pharmacokinetics , Docetaxel/chemistry , Docetaxel/pharmacokinetics , Drug Carriers/metabolism , Drug Carriers/pharmacokinetics , Drug Carriers/toxicity , Drug Liberation , Humans , Hydrogen-Ion Concentration , Lung/pathology , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Macrophages/drug effects , Mice , Myeloid-Derived Suppressor Cells/drug effects , Nanoparticles/metabolism , Nanoparticles/toxicity , Reactive Oxygen Species/metabolism , T-Lymphocytes/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
7.
Cell Death Dis ; 12(4): 313, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762580

ABSTRACT

Lung adenocarcinoma (LUAD) has high incidence and mortality rates worldwide; however, its detailed molecular pathology remains unclear. Although circRNAs have gradually been identified as molecules that are differentially expressed in tumors and play key roles in tumor progression, their role in LUAD is poorly understood. Through microarray analysis, we obtained the circRNA expression profile of LUAD and found that circ-HMGA2 (hsa_circ_0027446), a novel RNA, is highly expressed in LUAD. The high expression of circ-HMGA2 was further verified in 36 paired LUAD and adjacent normal tissues. Functionally, circ-HMGA2 promoted LUAD cell metastasis in vitro and in vivo. The luciferase reporter assay and FISH results showed that circ-HMGA2 interacts with miR-1236-3p and that miR-1236-3p interacts with ZEB1. In addition, miR-1236-3p was expressed at low levels in LUAD, inhibited LUAD cell metastasis, and suppressed the function of circ-HMGA2. ZEB1 is an EMT-promoting transcription factor. The PCR and WB analysis results showed that circ-HMGA2 promotes both ZEB1 expression and EMT. MiR-1236-3p had the opposite effect, reversing the promotive effect of circ-HMGA2 on EMT. In summary, circ-HMGA2 promotes LUAD cell metastasis through the miR-1236-3p/EMT axis, indicating that it could be a therapeutic target in LUAD.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , RNA, Circular/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Mice , Mice, Nude , Neoplasm Metastasis
8.
Am J Transl Res ; 13(1): 57-72, 2021.
Article in English | MEDLINE | ID: mdl-33527008

ABSTRACT

BACKGROUND: Docetaxel (DTX) is widely used to treat many malignant tumors but has many adverse effects. Curcumin (CUR) also has effects on a variety of tumor cells and can reduce the toxicity and side effects of chemotherapy drugs and the occurrence of drug resistance. However, the combination of CUR and DTX for treating esophageal cancer has not been reported. METHODS: Human esophageal squamous cell carcinoma (ESCC) KYSE150 and KYSE510 cells were treated with CUR or DTX alone or both drugs and cancer cell viability was detected by CCK8, apoptosis, scratch-healing and migration assays. Electron microscopy and Western blots were used. In vivo experiments were used observe anti-tumor effects. RESULTS: CUR combined with DTX significantly inhibited the viability and migration of esophageal cancer cells (P<0.01) and further promoted the apoptosis of cancer cells. In addition, CUR induced autophagy in esophageal cancer cells when combined with DTX. DTX combined with CUR may induce apoptosis and autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. The compound 3-methyladenine (3MA) inhibited the autophagy induced by DTX and CUR (DC), further accelerated apoptosis and inhibited the proliferation of esophageal cancer cells when combined with DC. CONCLUSION: CUR combined with DTX induced apoptosis and autophagy of ESCC and probably worked through the PI3K/AKT/mTOR signaling pathway. The combination of the autophagy inhibitor, CUR and DTX may become a new treatment strategy for esophageal cancer.

9.
Dig Dis Sci ; 66(2): 442-451, 2021 02.
Article in English | MEDLINE | ID: mdl-32236884

ABSTRACT

BACKGROUND: Phospholipase C delta 1 (PLCD1) has been found to be abnormally expressed in various cancers. However, the potential roles of PLCD1 in esophageal squamous cell carcinoma (ESCC) are still unknown. METHODS: Western blot and qPCR were used to explore PLCD1 expression in various ESCC cells. MTT, colony formation assays, wound-healing assay, and transwell cell invasion assay were used to examine the cell viability in vitro. Western blot, qPCR, and luciferase assays were used to investigate the effects of PLCD1 on Wnt/ß-catenin signaling pathway. The xenograft models in nude mice were established to explore the roles of PLCD1 in vivo. RESULTS: We found that the expression of PLCD1 in ESCC cells was significantly downregulated than that in normal esophageal epithelial cells. In addition, upregulation of PLCD1 decreased the capacity of TE-1 and EC18 cells in proliferation, invasion, and migration. Then, the expression of ß-catenin/p-ß-catenin, C-myc, cyclin D1, MMP9, and MMP7 was investigated. PLCD1 activity was found to be negatively associated with the expression of ß-catenin, C-myc, cyclin D1, MMP9, and MMP7. Finally, the activity of PLCD1 in inhibiting ESCC proliferation in vivo was validated. CONCLUSION: The inhibitory effects of PLCD1 on the proliferation, invasion, and migration of TE-1 and EC18 cells might be associated with inhibition of Wnt/ß-catenin signaling pathway. PLCD1 played a key role in inhibiting ESCC carcinogenesis and progression in patients with ESCC.


Subject(s)
Cell Movement/physiology , Cell Proliferation/physiology , Esophageal Squamous Cell Carcinoma/metabolism , Phospholipase C delta/biosynthesis , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/prevention & control , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/pathology , Tumor Burden/physiology
10.
Int J Nanomedicine ; 15: 7745-7762, 2020.
Article in English | MEDLINE | ID: mdl-33116498

ABSTRACT

BACKGROUND: Although single-drug chemotherapy is still an effective treatment for esophageal cancer, its long-term application is limited by severe side-effects, poor bioavailability, and drug-resistance. Increasing attention has been paid to nanomedicines because of their good biological safety, targeting capabilities, and high-efficiency loading of multiple drugs. Herein, we have developed a novel T7 peptide-modified pH-responsive targeting nanosystem co-loaded with docetaxel and curcumin for the treatment of esophageal cancer. METHODS: Firstly, CM-ß-CD-PEI-PEG-T7/DTX/CUR (T7-NP-DC) was synthesized by the double emulsion (W/O/W) method. The targeting capacity of the nanocarrier was then investigated by in vitro and in vivo assays using targeted (T7-NP) and non-targeted nanoparticles (NP). Furthermore, the anti-tumor efficacy of T7-NP-DC was studied using esophageal cancer cells (KYSE150 and KYSE510) and a KYSE150 xenograft tumor model. RESULTS: T7-NP-DC was synthesized successfully and its diameter was determined to be about 100 nm by transmission electron microscopy and dynamic light scattering. T7-NP-DC with docetaxel and curcumin loading of 10% and 6.1%, respectively, had good colloidal stability and exhibited pH-responsive drug release. Good biosafety was observed, even when the concentration was as high as 800 µg/mL. Significant enhancement of T7-NP uptake was observed 6 hours after intravenous injection compared with NP. In addition, the therapeutic efficacy of T7-NP-DC was better than NP-DC and docetaxel in terms of growth suppression in the KYSE150 esophageal cancer model. CONCLUSION: The findings demonstrated that T7-NP-DC is a promising, non-toxic, and controllable nanoparticle that is capable of simultaneous delivery of the chemotherapy drug, docetaxel, and the Chinese Medicine, curcumin, for treatment of esophageal cancer. This novel T7-modified targeting nanosystem releases loaded drugs when exposed to the acidic microenvironment of the tumor and exerts a synergistic anti-tumor effect. The data indicate that the nanomaterials can safely exert synergistic anti-tumor effects and provide an excellent therapeutic platform for combination therapy of esophageal cancer.


Subject(s)
Curcumin/chemistry , Curcumin/pharmacology , Docetaxel/chemistry , Docetaxel/pharmacology , Drug Carriers/chemistry , Esophageal Neoplasms/drug therapy , Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Curcumin/administration & dosage , Curcumin/therapeutic use , Docetaxel/administration & dosage , Docetaxel/therapeutic use , Drug Liberation , Humans , Hydrogen-Ion Concentration , Nanomedicine , Polyethylene Glycols/chemistry , Polyethyleneimine/analogs & derivatives , Polyethyleneimine/chemistry , Tumor Microenvironment/drug effects
11.
Am J Cancer Res ; 9(10): 2264-2277, 2019.
Article in English | MEDLINE | ID: mdl-31720087

ABSTRACT

Studies have demonstrated that kallikrein-associated peptidase 11 (KLK11) is dysregulated in various cancers. However, the potential roles of KLK11 in esophageal squamous cell carcinoma (ESCC) are still unknown. In our study, we found that the expression of KLK11 in advanced ESCC was significantly down regulated than that in the adjacent tissues, and patients with higher KLK11 expression had markedly increased overall survival rates compared with those with lower KLK11 expression. In addition, up regulation of KLK11 decreased the proliferation capacity of TE-1 and EC18 cells, and down regulation of KLK11 increased the proliferation capacity. To explore the possible mechanism of KLK11 in regulating the proliferation of ESCC, the expression of the related factors in Wnt/ß-catenin pathway and cell cycle-mediated factors, such as GSK-3ß/p-GSK-3ß, ß-catenin, Ki67, p-Rb/Rb, CDK6, CDK4 and Cyclin D1, were determined. Furthermore, KLK11 was found to be negatively correlated with the expression of ß-catenin in the nucleus, as showed by decreased expression of cyclin D1 and Ki67 through deactivation of the Wnt/ß-catenin signaling pathway. XAV-939, a Wnt/ß-catenin inhibitor, partially decreased the effects of KLK11 deficiency on ESCC cell proliferation. Finally, we validated that KLK11 inhibited ESCC proliferation in vivo. Our results showed that the inhibitory effects of KLK11 on the proliferation of TE-1 and EC18 cells might be associated with inhibition of Wnt/ß-catenin signaling pathway. KLK11 played a key role in inhibiting ESCC carcinogenesis and progression and became a potential biomarker for poor prognosis in patients with ESCC.

12.
Am J Transl Res ; 11(8): 5272-5283, 2019.
Article in English | MEDLINE | ID: mdl-31497240

ABSTRACT

Babaodan capsule (BBD), a traditional Chinese (TCM) formula, has been widely used as an alternative remedy for multiple types of malignancies, clinically. However, the underlying mechanisms behind the efficacy of BBD remain poorly understood, particularly in regard to lung cancer. Herein, we demonstrate that BBD induced autophagic death in A549 and A549DDP cells without apoptosis. Treatment with autophagic inhibitor 3-MA, Baf-A1 and PI3K agonist, IGF-1, fully proved our conclusion, as well as uncovered the potential downregulated signaling pathway, PI3K/AKT/mTOR. The study additionally found that BBD could downregulate the expression of MDR1 and increase the chemosensitivity of cisplatin. Collectively, our results, both in vivo and in vitro, demonstrate that BBD leads to autophagic cell death through downregulating the PI3K/AKT/mTOR signaling pathway and improved the antitumor effects of cisplatin in non-small cell lung cancer (NSCLC).

13.
Cell Prolif ; 52(5): e12661, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31318114

ABSTRACT

OBJECTIVES: Circular RNAs (circRNAs) are non-coding RNAs, some of which are thought to be involved in gastric cancer development. Here, we examined the functions of circRNA hsa_circ_006100 in gastric cancer cells and an animal model of gastric cancer. MATERIALS AND METHODS: The expression of hsa_circ_006100, miR-195 and various functional genes was determined by quantitative RT-PCR. Cell viability, clone formation, apoptosis and cell migration/invasion abilities were analysed by the CCK-8 assay, crystal violet staining, Hoechst staining and Transwell assay, respectively. A tumour model was established by subcutaneously injecting tumour cells into nude mice. Levels of protein expression were analysed by Western blotting and immunohistochemistry. RESULTS: A bioinformatics analysis showed that miR-195 was negatively co-expressed with hsa_circ_006100. Patients with a high hsa_circ_006100 level or low miR-195 level had tumours with a high TNM stage, poor cellular differentiation and lymph node metastasis. miR-195 was targeted and inhibited by hsa_circ_006100. Overexpression of hsa_circ_006100 enhanced cellular viability and proliferation, while miR-195 suppressed hsa_circ_006100-enhanced cell growth and induced apoptosis in MGC-803 and AGS cells. Forced hsa_circ_006100 expression promoted the migration and invasion of MGC-803 and AGS cells, while those activities were inhibited by miR-195. Mechanistically, GPRC5A was predicted as a target of miR-195 and was upregulated in gastric cancer. A miR-195 inhibitor restored cell viability, proliferation, migration and invasion, and repressed apoptosis via GPRC5A. In vivo studies showed that knockdown of hsa_circ_006100 delayed tumour growth, reduced PCNA expression and upregulated miR-195 and BCL-2 expression which was restored by miR-195 inhibition due to GPRC5A/EGFR signalling, and changed the EMT phenotype in vivo. CONCLUSIONS: Hsa_circ_006100 functions as an oncogene in gastric cancer and exerts its effects via miR-195/GPRC5A signalling.


Subject(s)
MicroRNAs/metabolism , RNA/metabolism , Receptors, G-Protein-Coupled/metabolism , Stomach Neoplasms/pathology , Animals , Antagomirs/metabolism , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Mice , Mice, Nude , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Middle Aged , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA/antagonists & inhibitors , RNA/genetics , RNA Interference , RNA, Circular , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Stomach Neoplasms/metabolism
14.
Int J Mol Sci ; 17(7)2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27420055

ABSTRACT

Lipoxins (LXs) display unique pro-resolving and anti-inflammatory functions in a variety of inflammatory conditions. The present study was undertaken to investigate the effects of BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester), the agonist of lipoxin A4 receptor, in a model of Lipopolysaccharides (LPS) and d-Galactosamine (d-GalN) induced acute liver injury, and to explore the mechanisms. Histopathological analyses were carried out to quantify liver injury degree. The activities of myeloperoxidase (MPO) were examined to evaluate the levels of neutrophil infiltration. The activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum were detected to evaluate the functions of the liver. The amounts of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and interleukin-1ß (IL-1ß) were measured using enzyme-linked immunosorbent assay (ELISA), and the expression levels of transforming growth factor-ß1(TGF-ß1) and cyclooxygenase-2 (COX-2) were examined using Western blotting. The antioxidant capacity, the activities of inducible nitric oxide synthase (iNOS), the contents of malondialdehyde (MDA) and nitric oxide (NO) were analyzed with the kits via biochemical analysis. We established the model of acute liver injury with lipopolysaccharide and d-Galactosamine (LPS/d-GalN): (1) histopathological results and MPO activities, with the activities of AST and ALT in serum, consistently demonstrated LPS and d-GalN challenge could cause severe liver damage, but BML-111 could prevent pathological changes, inhibit neutrophil infiltration, and improve the hepatic function; (2) LPS/d-GalN increased TNF-α, IL-1ß, COX-2, and IL-10, while decreasing TGF-ß1. However, BML-111 could repress LPS/d-GalN -induced TNF-α, IL-1ß and COX-2, meanwhile increasing the expression levels of TGF-ß1 and IL-10; (3) LPS/d-GalN inhibited the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), and hydroxyl radical-scavenging ability, simultaneously increasing the levels of MDA and NO, so also the activity of iNOS. Otherwise, BML-111 could reverse all the phenomena. In a word, BML-111 played a protective role in acute liver injury induced by LPS and d-GalN in rats, through improving antioxidant capacity and regulating the balance of inflammatory cytokines.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Galactosamine/toxicity , Heptanoic Acids/pharmacology , Lipopolysaccharides/toxicity , Protective Agents/pharmacology , Acute Disease , Animals , Antioxidants/metabolism , Blotting, Western , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Male , Rats , Rats, Sprague-Dawley
15.
Inflammation ; 36(5): 1101-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23640201

ABSTRACT

Inflammation plays an important role in the occurrence and development of fibrosis. Lipoxins (LXs) and BML-111 (lipoxin A4 agonist) have been approved for potent anti-inflammatory properties. Previously, we and others had showed LXs and BML-111 could protect acute hepatic injury, inhibit the growth and invasion of hepatic tumor. However, there are few reports dealing with their effects on hepatic fibrosis. To explore whether LXs and the analog could interrupt the process of hepatic fibrosis, the effects of BML-111 on tetrachloride-induced hepatic fibrosis were observed and the possible mechanism were discussed. Sprague-Dawley rats were induced liver fibrosis by carbon tetrachloride (CCl4) for 10 weeks with or without BML-111, and the histopathology and collagen content were employed to quantify hepatic necro-inflammation and fibrosis. Moreover, the expression levels of α-smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1), and platelet-derived growth factor (PDGF) were examined via Western blot or ELISA. Rats treated with BML-111 improved hepatic necro-inflammation and inhibited hepatic fibrosis in association with reduction of α-SMA expression and decreased collagen deposition. Furthermore, BML-111 could downregulate the expressions of TGF-ß1 and PDGF significantly. BML-111 played a critical protective role in CCl4-induced hepatic fibrosis through inhibiting the levels of TGF-ß1 and PDGF in rats.


Subject(s)
Heptanoic Acids/pharmacology , Liver Cirrhosis/prevention & control , Platelet-Derived Growth Factor/metabolism , Receptors, Lipoxin/agonists , Transforming Growth Factor beta1/metabolism , Actins/biosynthesis , Animals , Carbon Tetrachloride , Collagen/biosynthesis , Down-Regulation/drug effects , Gene Expression , Inflammation/drug therapy , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Platelet-Derived Growth Factor/biosynthesis , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/biosynthesis , Transforming Growth Factor beta1/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...