Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898172

ABSTRACT

Capturing the full complexity of the diverse hierarchical interactions in the protein interactome is challenging. Here we report a DNA-barcoding method for the multiplexed mapping of pairwise and higher-order protein interactions and their dynamics within cells. The method leverages antibodies conjugated with barcoded DNA strands that can bidirectionally hybridize and covalently link to linearize closely spaced interactions within individual 3D protein complexes, encoding and decoding the protein constituents and the interactions among them. By mapping protein interactions in cancer cells and normal cells, we found that tumour cells exhibit a larger diversity and abundance of protein complexes with higher-order interactions. In biopsies of human breast-cancer tissue, the method accurately identified the cancer subtype and revealed that higher-order protein interactions are associated with cancer aggressiveness.

2.
Nat Commun ; 14(1): 4278, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460561

ABSTRACT

Current technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets. Each transducer comprises hybrid complexes - protein enzymes encapsulated within metal organic frameworks - to configure strong catalytic activity and robust protection. Upon target RNA hybridization, the transducer activates directly to liberate catalytic complexes, in a target-recyclable manner; when partitioned within a microfluidic device, these complexes can individually catalyze strong chemifluorescence reactions for digital RNA quantification. The EZ-READ platform thus enables programmable and reliable RNA detection, across different-sized RNA subtypes (miRNA and mRNA), directly in sample lysates. When clinically evaluated, the EZ-READ platform established composite signatures for accurate blood-based GBM diagnosis and subtyping.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Humans , MicroRNAs/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Messenger , Nucleic Acid Hybridization , Glioblastoma/genetics , Glioblastoma/pathology
3.
Enzyme Microb Technol ; 142: 109695, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33220873

ABSTRACT

A robust biocatalyst for green Henry reaction was achieved. Based on the fact that Henry reaction requires a base for proton transfer, we firstly proposed that the catalytic triad of lipase could play this role. The distance between the substrate and the catalytic center and the surrounding amino acid interaction network were used as the criterion. Benzaldehyde and nitromethane were used as the model reaction, RNL (Lipase from Rhizopus niveus) was considered to be the best Henry reaction catalyst via a molecular dynamics simulation. Then experiments demonstrated that RNL has a yield of 48 % using model substrate in water. Further, in order to increase product yield, the chemical modifier 1, 2-cyclohexanedione (CHD) was used to modify Arg on RNL. As a result, RNL (CHD) increased the activity of catalyzing Henry reaction and had a broad spectrum of substrates, the yield of the product was as high as 67-99 %.


Subject(s)
Lipase , Rhizopus , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...