Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Foods ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38890916

ABSTRACT

Maillard reaction intermediate (MRI) was prepared by the enzymatic hydrolysate (EH) of Oudemansiella raphanipes and fructose. The optimal preparation condition of MRIs was obtained when the Maillard reaction parameters were as follows: fructose addition of 5%, reaction time of 60 min, and temperature of 60 °C. E-Tongue results indicated that the umami and saltiness of MRIs were greater than those of Maillard reaction products (MRPs) and EH, and the taste-enhancing ability of MRIs was even more prominent than that of MRPs. E-Nose could obviously distinguish EH, MRIs, and MRPs, and there was an obvious difference between MRPs and MRIs regarding volatile aroma compounds. A total of 35 volatile flavor substances were identified among the three samples, including 6 alcohols, 13 aldehydes, 9 ketones, 2 esters, and 5 other compounds. Overall, MRIs could avoid the production of complete reaction products with an inferior flavor, and further enhance the umami taste.

2.
Plant Cell ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366565

ABSTRACT

Lateral roots (LRs) increase root surface area and allow plants greater access to soil water and nutrients. LR formation is tightly regulated by the phytohormone auxin. Whereas the transcription factor ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR13 (ERF13) prevents LR emergence in Arabidopsis (Arabidopsis thaliana), auxin activates MITOGEN-ACTIVATED PROTEIN KINASE14 (MPK14), which leads to ERF13 degradation and ultimately promotes LR emergence. In this study, we discovered interactions between ERF13 and the E3 ubiquitin ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B. As MAC3A and MAC3B gradually accumulate in the LR primordium, ERF13 levels gradually decrease. We demonstrate that MAC3A and MAC3B ubiquitinate ERF13, leading to its degradation and accelerating the transition of LR primordia from stage IV to stage V. Auxin enhances the MAC3A and MAC3B interaction with ERF13 by facilitating MPK14-mediated ERF13 phosphorylation. In summary, this study reveals the molecular mechanism by which auxin eliminates the inhibitory factor ERF13 through the MPK14-MAC3A and MAC3B signaling module, thus promoting LR emergence.

3.
Proc Natl Acad Sci U S A ; 120(19): e2218503120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126711

ABSTRACT

The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades. On the one hand, auxin positively regulates the transcription of DPa via AUXIN RESPONSE FACTOR 7 and ARF19. On the other hand, auxin enhances the protein stability of DPa through MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)/MPK6-mediated phosphorylation. Consistently, mutation of the identified three threonine residues (Thr10, Thr25, and Thr227) of DPa to nonphosphorylated form alanine (DPa3A) highly decreased the phosphorylation level of DPa, which decreased its protein stability and affected the maintenance of root DSC identity. Taken together, this study provides insight into the molecular mechanism of how auxin regulates root distal stem cell identity through the dual regulations of DPa at both transcriptional and posttranslational levels.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Division , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Roots/metabolism , Stem Cells/metabolism
4.
Sci Adv ; 9(1): eade2493, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36598987

ABSTRACT

Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant 1 (BZR1), a core BR signaling component. Auxin promotes BZR1 nuclear accumulation in hypocotyl cells, a process dependent on mitogen-activated protein kinase 3 (MPK3) and MPK6, which are both activated by auxin and whose encoding genes are highly expressed in hypocotyls. We determined that MPK3/MPK6 phosphorylate and reduce the protein stability of general regulatory factor 4 (GRF4), a member of the 14-3-3 family of proteins that retain BZR1 in the cytoplasm. In summary, this study reveals the molecular mechanism by which auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation via MPK3/MPK6-regulated GRF4 protein stability.

5.
Sci Data ; 9(1): 691, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369203

ABSTRACT

Investigating oceanic variations at multiple spatial and temporal scales is vital for an in-depth understanding of the ocean response to global climate change. However, the available observational datasets contain uncertainties and deficiencies that leave them insufficient for investigating global ocean variability with long temporal scales and/or meso spatial scales. Here, we present a daily and century-long (1901-2010) global oceanic simulation dataset with high resolution (1/10° horizontal resolution and 55 vertical layers) forced by 6-hour atmospheric data from ERA-20C. Preliminary evaluations demonstrate that this simulation can realistically reproduce the large-scale global ocean circulation and capture the essential features of global surface mesoscale eddies. This long-running high-resolution simulation dataset provides temporally highly resolved oceanic and flux variables. Together with its good performance in simulating the global oceanic state, this eddy-resolving simulation has the potential to help toward a better understanding of ocean variability at multiple spatial and temporal scales.

7.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628135

ABSTRACT

Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.


Subject(s)
Arachis , Fabaceae , Arachis/genetics , Indoleacetic Acids , Phylogeny , Plant Breeding
8.
J Integr Plant Biol ; 64(7): 1339-1351, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35475598

ABSTRACT

Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear. Here, we report that gravity stimulates the transcription of METHYL ESTERASE17 (MES17) along the lower side of the hypocotyl via ARF7-dependent auxin signaling. The asymmetric distribution of MES17, a methyltransferase that converts auxin from its inactive form methyl indole-3-acetic acid ester (MeIAA) to its biologically active form free-IAA, enhanced the gradient of active auxin across the hypocotyl, which in turn reversely amplified the asymmetric auxin responses and differential growth that shape gravitropic bending. Taken together, our findings reveal the novel role of MES17-mediated auxin homeostasis in gravitropic responses and identify an ARF7-triggered feedback mechanism that reinforces the asymmetric distribution of active auxin and strictly controls gravitropism in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Feedback , Gravitropism/physiology , Homeostasis , Indoleacetic Acids , Plant Roots , Transcription Factors
9.
J Exp Bot ; 73(11): 3711-3725, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35196372

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) refer to bacteria that colonize the rhizosphere and contribute to plant growth or stress tolerance. To further understand the molecular mechanism by which PGPR exhibit symbiosis with plants, we performed a high-throughput single colony screening from the rhizosphere, and uncovered a bacterium (named promoting lateral root, PLR) that significantly promotes Arabidopsis lateral root formation. By 16S rDNA sequencing, PLR was identified as a novel sub-species of Serratia marcescens. RNA-seq analysis of Arabidopsis integrated with phenotypic verification of auxin signalling mutants demonstrated that the promoting effect of PLR on lateral root formation is dependent on auxin signalling. Furthermore, PLR enhanced tryptophan-dependent indole-3-acetic acid (IAA) synthesis by inducing multiple auxin biosynthesis genes in Arabidopsis. Genome-wide sequencing of PLR integrated with the identification of IAA and its precursors in PLR exudates showed that tryptophan treatment significantly enhanced the ability of PLR to produce IAA and its precursors. Interestingly, PLR induced the expression of multiple nutrient (N, P, K, S) transporter genes in Arabidopsis in an auxin-independent manner. This study provides evidence of how PLR enhances plant growth through fine-tuning auxin biosynthesis and signalling in Arabidopsis, implying a potential application of PLR in crop yield improvement through accelerating root development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Serratia marcescens/genetics , Serratia marcescens/metabolism , Tryptophan/metabolism
10.
J Integr Plant Biol ; 64(2): 371-392, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35018726

ABSTRACT

Auxin, one of the first identified and most widely studied phytohormones, has been and will remain a hot topic in plant biology. After more than a century of passionate exploration, the mysteries of its synthesis, transport, signaling, and metabolism have largely been unlocked. Due to the rapid development of new technologies, new methods, and new genetic materials, the study of auxin has entered the fast lane over the past 30 years. Here, we highlight advances in understanding auxin signaling, including auxin perception, rapid auxin responses, TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes (TIR1/AFBs)-mediated transcriptional and non-transcriptional branches, and the epigenetic regulation of auxin signaling. We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals. In addition, we cover the TRANSMEMBRANE KINASE-mediated non-canonical signaling, which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development. The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field, leading to an increasingly deeper, more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , F-Box Proteins/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Receptors, Cell Surface/metabolism
11.
Plant Biotechnol J ; 20(3): 526-537, 2022 03.
Article in English | MEDLINE | ID: mdl-34687251

ABSTRACT

Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear. We screened EMS-induced maize mutants and identified a dwarf mutant zm66, linked to a single base change in TERMINAL EAR 1 (ZmTE1). Detailed phenotypic analysis revealed that zm66 (zmte1-2) has shorter internodes and increased node numbers, caused by decreased cell elongation and disordered intercalary meristem formation, respectively. Transcriptome analysis showed that auxin signalling genes are also dysregulated in zmte1-2, as are cell elongation and cell cycle-related genes. This argues that ZmTE1 regulates auxin signalling, cell division, and cell elongation. We found that the ZmWEE1 kinase phosphorylates ZmTE1, thus confining it to the nucleus and probably reducing cell division. In contrast, the ZmPP2Ac-2 phosphatase promotes dephosphorylation and cytoplasmic localization of ZmTE1, as well as cell division. Taken together, ZmTE1, a key regulator of plant height, is responsible for maintaining organized formation of internode meristems and rapid cell elongation. ZmWEE1 and ZmPP2Ac-2 might balance ZmTE1 activity, controlling cell division and elongation to maintain normal maize growth.


Subject(s)
Meristem , Zea mays , Cell Cycle , Gene Expression Regulation, Plant/genetics , Indoleacetic Acids , Meristem/genetics , Zea mays/genetics
12.
Plant Cell Rep ; 41(1): 249-261, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34697685

ABSTRACT

KEY MESSAGE: WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.


Subject(s)
Carrier Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Nicotiana/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Ralstonia solanacearum/physiology , Carrier Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Nicotiana/microbiology
13.
EMBO Rep ; 22(10): e52457, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34402578

ABSTRACT

Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase 3 , Salt Tolerance/genetics
14.
Mol Plant ; 14(4): 633-646, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33453414

ABSTRACT

Abscisic acid (ABA) transport plays an important role in systemic plant responses to environmental factors. However, it remains largely unclear about the precise regulation of ABA transporters in plants. In this study, we show that the C-terminally encoded peptide receptor 2 (CEPR2) directly interacts with the ABA transporter NRT1.2/NPF4.6. Genetic and phenotypic analyses revealed that NRT1.2/NPF4.6 positively regulates ABA response and that NRT1.2/NPF4.6 is epistatically and negatively regulated by CEPR2. Further biochemical assays demonstrated that CEPR2 phosphorylates NRT1.2/NPF4.6 at serine 292 to promote its degradation under normal conditions. However, ABA treatment and non-phosphorylation at serine 292 prevented the degradation of NRT1.2/NPF4.6, indicating that ABA inhibits the phosphorylation of this residue. Transport assays in yeast and Xenopus oocytes revealed that non-phosphorylated NRT1.2/NPF4.6 had high levels of ABA import activity, whereas phosphorylated NRT1.2/NPF4.6 did not import ABA. Analyses of complemented nrt1.2 mutants that mimicked non-phosphorylated and phosphorylated NRT1.2/NPF4.6 confirmed that non-phosphorylated NRT1.2S292A had high stability and ABA import activity in planta. Additional experiments showed that NRT1.2/NPF4.6 was degraded via the 26S proteasome and vacuolar degradation pathways. Furthermore, we found that three E2 ubiquitin-conjugating enzymes, UBC32, UBC33, and UBC34, interact with NRT1.2/NPF4.6 in the endoplasmic reticulum and mediate its ubiquitination. NRT1.2/NPF4.6 is epistatically and negatively regulated by UBC32, UBC33, and UBC34 in planta. Taken together, these results suggest that the stability and ABA import activity of NRT1.2/NPF4.6 are precisely regulated by its phosphorylation and degradation in response to environmental stress.


Subject(s)
Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Anion Transport Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Receptors, Peptide/metabolism , Anion Transport Proteins/genetics , Arabidopsis Proteins/genetics , Phosphorylation/drug effects , Receptors, Peptide/genetics
15.
Mol Plant ; 14(2): 285-297, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33221411

ABSTRACT

Auxin plays a critical role in lateral root (LR) formation. The signaling module composed of auxin-response factors (ARFs) and lateral organ boundaries domain transcription factors mediates auxin signaling to control almost every stage of LR development. Here, we show that auxin-induced degradation of the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor ERF13, dependent on MITOGEN-ACTIVATED PROTEIN KINASE MPK14-mediated phosphorylation, plays an essential role in LR development. Overexpression of ERF13 results in restricted passage of the LR primordia through the endodermal layer, greatly reducing LR emergence, whereas the erf13 mutants showed an increase in emerged LR. ERF13 inhibits the expression of 3-ketoacyl-CoA synthase16 (KCS16), which encodes a fatty acid elongase involved in very-long-chain fatty acid (VLCFA) biosynthesis. Overexpression of KCS16 or exogenous VLCFA treatment rescues the LR emergence defects in ERF13 overexpression lines, indicating a role downstream of the auxin-MPK14-ERF13 signaling module. Collectively, our study uncovers a novel molecular mechanism by which MPK14-mediated auxin signaling modulates LR development via ERF13-regulated VLCFA biosynthesis.


Subject(s)
Arabidopsis Proteins/metabolism , Fatty Acids/biosynthesis , Indoleacetic Acids/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , Plant Roots/growth & development , Signal Transduction , Transcription Factors/metabolism , Phosphorylation , Plant Roots/metabolism , Protein Binding , Proteolysis
16.
Trends Plant Sci ; 25(11): 1117-1130, 2020 11.
Article in English | MEDLINE | ID: mdl-32675014

ABSTRACT

Salt stress is one of the major environmental stresses limiting plant growth and productivity. To adapt to salt stress, plants have developed various strategies to integrate exogenous salinity stress signals with endogenous developmental cues to optimize the balance of growth and stress responses. Accumulating evidence indicates that phytohormones, besides controlling plant growth and development under normal conditions, also mediate various environmental stresses, including salt stress, and thus regulate plant growth adaptation. In this review, we mainly discuss and summarize how plant hormones mediate salinity signals to regulate plant growth adaptation. We also highlight how, in response to salt stress, plants build a defense system by orchestrating the synthesis, signaling, and metabolism of various hormones via multiple crosstalks.


Subject(s)
Plant Growth Regulators , Salt Stress , Plant Development , Salinity , Stress, Physiological
17.
J Integr Plant Biol ; 62(4): 403-420, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31001913

ABSTRACT

Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses. Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides (STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth upon exposure to chemically synthesized STMP1 and STMP2. Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1, STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.


Subject(s)
Brassicaceae/immunology , Brassicaceae/microbiology , Peptides/metabolism , Plant Development , Amino Acid Sequence , Arabidopsis/metabolism , Bacteria/drug effects , Brassicaceae/genetics , Brassicaceae/growth & development , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Peptides/chemistry , Peptides/pharmacology , Phenotype , Phylogeny , Promoter Regions, Genetic/genetics , Species Specificity , Stress, Physiological/genetics , Subcellular Fractions/metabolism
18.
J Biosci ; 44(4)2019 Sep.
Article in English | MEDLINE | ID: mdl-31502559

ABSTRACT

Stable transgenic rice line (named KRSV-1) with strong resistance against rice stripe virus was generated using the gene sequence of disease-specific protein by RNA interference. Comprehensive safety assessment of transgenic plants has turned into a significant field of genetic modification food safety. In this study, a safety assessment of KRSV-1 was carried out in a stepwise approach. The molecular analysis exhibited that KRSV-1 harbored one copy number of transgene, which was integrated into the intergenic non-coding region of chromosome 2 associated with inter-chromosomal translocations of 1.6-kb segments of chromosome 8. Then, transcriptomics and proteomics analyses were carried out to detect the unintended effects as a result of the integration of the transgene. Although 650 dramatically differentially expressed genes (DDEGs) and 357 differentially expressed proteins were detected between KRSV-1 and wild-type (WT) by transcriptomics and proteomics analyses, no harmful members in the form of toxic proteins and allergens were observed. Encouragingly, the nutritional compositions of seeds from KRSV-1 were comparable with WT seeds. The results of this entire study of molecular analysis, transcriptome and proteome profile of KRSV-1 revealed that no detrimental changes in the form of toxic proteins and allergens were detected in the transgenic rice line due to the integration of the transgene.


Subject(s)
Genome, Plant/genetics , Oryza/genetics , Plant Diseases/genetics , Tenuivirus/genetics , Computational Biology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/virology , Plant Diseases/virology , Plants, Genetically Modified/genetics , Proteome/genetics , Tenuivirus/pathogenicity , Transcriptome/genetics
19.
Trends Plant Sci ; 24(8): 672-676, 2019 08.
Article in English | MEDLINE | ID: mdl-31255544

ABSTRACT

Plant subclass III SnRK2 protein kinases are widely recognized as key regulators of abscisic acid signaling and downstream stress responses. Recent research has revealed that SnRK2s function in growth-promoting signaling pathways, suggesting that SnRK2s tightly control the yin-yang relationship between plant growth and stress responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases , Signal Transduction
20.
J Exp Bot ; 70(19): 5457-5469, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31232446

ABSTRACT

Pyrabactin resistance 1 (PYR1)/PYR1-like (PYL) abscisic acid (ABA) receptors have been proved to be recruited in the plasma membrane (PM). In order to explain the roles of PYR/PYLs in the PM, PYL4 was used as bait to screen the PM-localized leucine-rich repeat receptor-like kinase family, and five members were found directly interacting with PYL4. Loss of function by T-DNA insertion in C-terminally encoded peptide receptor 2 (CEPR2) together with phloem intercalated with xylem (PXY) and PXY-Like 2 (PXL2) led to ABA hypersensitivity, while CEPR2 overexpression led to ABA insensitivity compared with the wild type, indicating the redundant and negative roles of CEPR2, PXY, and PXL2 in ABA signaling. The PYL4 proteins were strongly accumulated in cepr2/pxy/pxl2 compared with the wild type. Furthermore, higher phosphorylation levels accompanied by lower protein levels of PYL4 in CEPR2 overexpression lines were observed, indicating the requirement of phosphorylation of PYLs for degradation. Subsequently, MS and in vitro kinase assays demonstrated that CEPR2 phosphorylated PYL4 at Ser54, while this phosphorylation was diminished or even eliminated in the presence of ABA. Taken together, CEPR2 promotes the phosphorylation and degradation of PYLs in unstressed conditions, whereas ABA represses this process to initiate ABA response during times of stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Protein Kinases/genetics , Receptors, Cell Surface/genetics , Receptors, Peptide/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Receptors, Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...