Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 14: 1040828, 2022.
Article in English | MEDLINE | ID: mdl-36570542

ABSTRACT

Purpose: This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method: The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results: Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion: Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.

5.
RSC Adv ; 9(68): 39631-39639, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-35541400

ABSTRACT

A poly(styrene-ran-cinnamic acid) (SCA) containing 6.8 mol% of CA, with a M̄ w (∼217 000) comparable to commercial polystyrene (PS), was successfully synthesised via emulsion free-radical copolymerisation as evidenced by 1744 and 1703 cm-1 infrared peak occurrences, respectively characteristic of free and dimeric carboxyl C[double bond, length as m-dash]O stretches. Upon the interchain hydrogen bond cross-linking by CA, the impact toughness of the SCA was considerably improved by 47.2% against PS, the glass transition, heat deflection and Vicat softening temperatures were significantly enhanced until 117.0, 108.0 and 118.3 °C, respectively, compared with PS (95.2, 87.6 and 96.0 °C), while the extensional viscosities were near one order-of-magnitude higher than PS by which the temperature window required for appropriate melt-strengths would be greatly broadened. Meanwhile, the SCA displayed other properties basically analogous to PS. This work presents a modified PS, SCA, with enhanced toughness, heat resistance and melt strength that potentially extend its styrofoam and commodity applications.

6.
ACS Macro Lett ; 8(7): 841-845, 2019 07 16.
Article in English | MEDLINE | ID: mdl-35619506

ABSTRACT

When a small-molecule ionic crystal is group-substituted with polymer chain-segments to form an ionomer, do its constrained ionic aggregates maintain ordered internal structures? This work presents, for a Na-salt sulfonated-polystyrene ionomer, reconciled TEM electron-diffraction schlieren textures and WAXS Bragg-type reflections from the ionic-aggregate nanodomains, which solidly prove the aggregates' internal (mono)crystalline order. The observed DSC endotherm of the ionomer, identified by WAXS as an order-disorder transition interior to its aggregates, gradually becomes enhanced over a 3-month, room-temperature physical aging process, indicating that the aggregates' ordering is a slow relaxation process in which the degree of order increases with time. This work corroborates an uncommon form of order, i.e., polymer-bound small-molecule ionic (quasi)crystal, which is supplementary to the order phenomena in small molecules, polymers, and liquid crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...