Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 17(24): e202200416, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36210341

ABSTRACT

Compounds that activate only the G-protein signalling pathway represent an effective strategy for making safer opioids. In the present study, we report the design, synthesis and evaluation of two classes of novel PZM21 derivatives containing the benzothiophene ring and biphenyl ring group respectively as biased µ-opioid receptor (µOR) agonists. The new compound SWG-LX-33 showed potent µOR agonist activity and produced µOR-dependent analgesia. SWG-LX-33 does not activate the ß-arrestin-2 signalling pathway in vitro even at high concentrations. Computational docking demonstrated the amino acid residue ASN150 to be critical for the weak efficacy and potency of µOR agonists in arrestin recruitment.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Humans , Receptors, Opioid, mu/agonists , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemistry , Pain , GTP-Binding Proteins , beta-Arrestin 2/metabolism , Arrestin/metabolism
2.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808667

ABSTRACT

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


Subject(s)
Amides , Analgesics , Pain/drug therapy , Sodium Channel Blockers , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Drug Evaluation , Male , Mice , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Pain/chemically induced , Pain/metabolism , Sodium Channel Blockers/chemical synthesis , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology
3.
ChemMedChem ; 15(1): 155-161, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31729174

ABSTRACT

G protein-biased mu-opioid receptor (MOR) agonists have been developed as promising new potent analgesic drugs with fewer adverse side effects than standard MOR agonists. PZM21 represents a unique chemotype unrelated to known opioids, which makes it a desirable lead for modification to find analgesics with new chemical entities. In the present study, we synthesized and tested novel PZM21 derivatives as potent biased MOR agonists by introducing a benzodioxolane group to replace the hydroxybenzene of PZM21. The new compounds displayed more potent analgesic activities in vivo and greater bias toward G protein signaling in vitro than did PZM21. These results suggest that the benzodioxolane group is essential for the maintenance of bias. Compounds 7 i ((S)-1-(3-(benzo[d][1,3]dioxol-4-yl)-2-(dimethylamino)propyl)-3-phenethylurea) and 7 j ((S)-1-(3-(benzo[d][1,3]dioxol-4-yl)-2-(dimethylamino)propyl)-3-benzylurea) could serve as new leads for further modifications to find novel biased MOR agonists with greater G protein signaling potency and less ß-arrestin-2 recruitment.


Subject(s)
Analgesics/therapeutic use , Pain/drug therapy , Receptors, Opioid, mu/agonists , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Male , Mice , Mice, Inbred ICR , Pain/chemically induced , Pain/pathology , Receptors, Opioid, mu/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , beta-Arrestin 2/metabolism
4.
Molecules ; 24(2)2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30641969

ABSTRACT

'Biased' ligands of G protein-coupled receptors (GPCRs) represent a type of promising analgesic with reduced on-target side effects. PZM21, a potent µ-opioid-receptor (µOR)-biased agonist with a new chemical scaffold compared to classic opioids, has been identified as a therapeutic lead molecule for treating pain. In the current study, novel PZM21 analogues were synthesized and evaluated for their in vitro and in vivo efficacy. Novel compound 7a and PZM21 demonstrated undetectable ß-arrestin-2 recruitment, however, their analgesic effects need to be further confirmed. Compounds 7b, 7d, and 7g were stronger analgesics than PZM21 in both the mouse formalin injection assay and the writhing test. Compound 7d was the most potent analogue, requiring a dose that was 1/16th to 1/4th of that of PZM21 for its analgesic activity in the two assays, respectively. Therefore, compound 7d could serve as a lead to develop new biased µOR agonists for treating pain.


Subject(s)
Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/pharmacology , Receptors, Opioid, mu/agonists , Analgesics, Opioid/chemistry , Cell Line , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Protein Binding , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship , beta-Arrestins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...