Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 12(1): 5921, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34635649

ABSTRACT

Propylene epoxidation with O2 to propylene oxide is a very valuable reaction but remains as a long-standing challenge due to unavailable efficient catalysts with high selectivity. Herein, we successfully explore 27 nm-sized cubic Cu2O nanocrystals enclosed with {100} faces and {110} edges as a highly selective catalyst for propylene epoxidation with O2, which acquires propylene oxide selectivity of more than 80% at 90-110 °C. Propylene epoxidation with weakly-adsorbed O2 species at the {110} edge sites exhibits a low barrier and is the dominant reaction occurring at low reaction temperatures, leading to the high propylene oxide selectivity. Such a weakly-adsorbed O2 species is not stable at high reaction temperatures, and the surface lattice oxygen species becomes the active oxygen species to participate in propylene epoxidation to propylene oxide and propylene partial oxidation to acrolein at the {110} edge sites and propylene combustion to CO2 at the {100} face sites, which all exhibit high barriers and result in decreased propylene oxide selectivity.

3.
Nat Commun ; 12(1): 4331, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267215

ABSTRACT

Cu-ZnO-Al2O3 catalysts are used as the industrial catalysts for water gas shift (WGS) and CO hydrogenation to methanol reactions. Herein, via a comprehensive experimental and theoretical calculation study of a series of ZnO/Cu nanocrystals inverse catalysts with well-defined Cu structures, we report that the ZnO-Cu catalysts undergo Cu structure-dependent and reaction-sensitive in situ restructuring during WGS and CO hydrogenation reactions under typical reaction conditions, forming the active sites of CuCu(100)-hydroxylated ZnO ensemble and CuCu(611)Zn alloy, respectively. These results provide insights into the active sites of Cu-ZnO catalysts for the WGS and CO hydrogenation reactions and reveal the Cu structural effects, and offer the feasible guideline for optimizing the structures of Cu-ZnO-Al2O3 catalysts.

4.
Angew Chem Int Ed Engl ; 58(13): 4276-4280, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30680863

ABSTRACT

The identification of the contribution of different surface sites to the catalytic activity of a catalyst nanoparticle is one of the most challenging issues in the fundamental studies of heterogeneous catalysis. We herein demonstrate an effective strategy of using a series of uniform cubic Cu2 O nanocrystals with different sizes to identify the intrinsic activity and contributions of face and edge sites in the catalysis of CO oxidation by a combination of reaction kinetics analysis and DFT calculations. Cu2 O nanocrystals undergo in situ surface oxidation forming CuO thin films during CO oxidation. As the average size of the cubic Cu2 O nanocrystals decreases from 1029 nm to 34 nm, the dominant active sites contributing to the catalytic activity switch from face sites to edge sites. These results reveal the interplay between the intrinsic catalytic activity and the density of individual types of surface sites on a catalyst nanoparticle in determining their contributions to the catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...