Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.306
Filter
1.
Front Plant Sci ; 15: 1417504, 2024.
Article in English | MEDLINE | ID: mdl-38947951

ABSTRACT

Improving the nutrient content of red soils in southern China is a priority for efficient rice production there. To assess the effectiveness of oilseed rape as green manure for the improvement of soil phosphorus nutrient supply and rice yield in red soil areas, a long-term field plot experiment was conducted comparing two species of rape, Brassica napus (BN) and Brassica juncea (BJ). The effects of returning oilseed rape on soil phosphorus availability, phosphorus absorption, and yield of subsequent rice under rice-green manure rotation mode were analyzed, using data from the seasons of 2020 to 2021. The study found that compared with winter fallow treatment (WT) and no-tillage treatment (NT), the soil available phosphorus content of BN was increased, and that of BJ was significantly increased. The content of water-soluble inorganic phosphorus of BJ increased, and that of BN increased substantially. Compared with the WT, the soil organic matter content and soil total phosphorus content of BN significantly increased, as did the soil available potassium content of BJ, and the soil total phosphorus content of BJ was significantly increased compared with NT. The soil particulate phosphorus content of BJ and BN was significantly increased by 14.00% and 16.00%, respectively. Compared with the WT, the phosphorus activation coefficient of BJ was significantly increased by 11.41%. The rice plant tiller number under the green manure returning treatment was significantly increased by 43.16% compared with the winter fallow treatment. The green manure returning measures increased rice grain yield by promoting rice tiller numbers; BN increased rice grain yield by 9.91% and BJ by 11.68%. Based on these results, returning oilseed rape green manure could augment the phosphorus nutrients of red soil and promote phosphorus availability. Rice-oilseed rape green manure rotation could increase rice grain yield.

2.
BMC Infect Dis ; 24(1): 639, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926676

ABSTRACT

BACKGROUND: There is a need to understand the relationship between COVID-19 Convalescent Plasma (CCP) anti-SARS-CoV-2 IgG levels and clinical outcomes to optimize CCP use. This study aims to evaluate the relationship between recipient baseline clinical status, clinical outcomes, and CCP antibody levels. METHODS: The study analyzed data from the COMPILE study, a meta-analysis of pooled individual patient data from 8 randomized clinical trials (RCTs) assessing the efficacy of CCP vs. control, in adults hospitalized for COVID-19 who were not receiving mechanical ventilation at randomization. SARS-CoV-2 IgG levels, referred to as 'dose' of CCP treatment, were retrospectively measured in donor sera or the administered CCP, semi-quantitatively using the VITROS Anti-SARS-CoV-2 IgG chemiluminescent immunoassay (Ortho-Clinical Diagnostics) with a signal-to-cutoff ratio (S/Co). The association between CCP dose and outcomes was investigated, treating dose as either continuous or categorized (higher vs. lower vs. control), stratified by recipient oxygen supplementation status at presentation. RESULTS: A total of 1714 participants were included in the study, 1138 control- and 576 CCP-treated patients for whom donor CCP anti-SARS-CoV2 antibody levels were available from the COMPILE study. For participants not receiving oxygen supplementation at baseline, higher-dose CCP (/control) was associated with a reduced risk of ventilation or death at day 14 (OR = 0.19, 95% CrI: [0.02, 1.70], posterior probability Pr(OR < 1) = 0.93) and day 28 mortality (OR = 0.27 [0.02, 2.53], Pr(OR < 1) = 0.87), compared to lower-dose CCP (/control) (ventilation or death at day 14 OR = 0.79 [0.07, 6.87], Pr(OR < 1) = 0.58; and day 28 mortality OR = 1.11 [0.10, 10.49], Pr(OR < 1) = 0.46), exhibiting a consistently positive CCP dose effect on clinical outcomes. For participants receiving oxygen at baseline, the dose-outcome relationship was less clear, although a potential benefit for day 28 mortality was observed with higher-dose CCP (/control) (OR = 0.66 [0.36, 1.13], Pr(OR < 1) = 0.93) compared to lower-dose CCP (/control) (OR = 1.14 [0.73, 1.78], Pr(OR < 1) = 0.28). CONCLUSION: Higher-dose CCP is associated with its effectiveness in patients not initially receiving oxygen supplementation, however, further research is needed to understand the interplay between CCP anti-SARS-CoV-2 IgG levels and clinical outcome in COVID-19 patients initially receiving oxygen supplementation.


Subject(s)
Antibodies, Viral , COVID-19 Serotherapy , COVID-19 , Immunization, Passive , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/therapy , COVID-19/immunology , COVID-19/mortality , Antibodies, Viral/blood , SARS-CoV-2/immunology , Male , Middle Aged , Female , Immunoglobulin G/blood , Aged , Treatment Outcome , Adult , Retrospective Studies , Randomized Controlled Trials as Topic
3.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872428

ABSTRACT

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Subject(s)
Atractylodes , Gastric Mucosa , Indomethacin , Inflammasomes , Lactones , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Sesquiterpenes , Stomach Ulcer , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Indomethacin/adverse effects , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Rats , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry , Inflammasomes/metabolism , Inflammasomes/genetics , Inflammasomes/drug effects , Male , Atractylodes/chemistry , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Caspase 1/genetics , Caspase 1/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interleukin-18/genetics , Interleukin-18/metabolism
4.
J Infect Dis ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913690

ABSTRACT

Osteopontin (Opn) depletion can improve septic outcomes, but the underlying mechanism remains unknown. In this study, we demonstrated that non-haematopoietic but not haematopoietic Opn depletion improved septic outcomes. Compared to wild-type (WT) mice, co-housed Opn-/- mice displayed enhanced production of antibacterial peptides (AMPs), decreased bacterial loads, and a distinct bacterial composition of gut microbiota. Fecal microbiota transplantation (FMT) and OPN neutralization assay showed that Opn depletion could reduce the bacterial loads and improve septic inflammation. By employing an intestinal organoid culture system, we proved that OPN neutralization in WT organoids could inactivate AKT and decrease FOXO3a phosphorylation, resulting in enhanced AMP production, whereas OPN treatment in OPN deficient organoids could activate AKT and increase FOXO3a phosphorylation, leading to reduced AMP production. Our findings identified OPN as a novel regulatory factor of AMP production to modulate bacterial loads and composition of gut microbiota, in turn affecting sepsis outcomes.

6.
Physiol Rep ; 12(11): e16050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839736

ABSTRACT

In posterior spine surgery, retractors exert pressure on paraspinal muscles, elevating intramuscular pressure and compromising blood flow, potentially causing muscle injury during ischemia-reperfusion. Ginkgo biloba extract (EGb 761), known for its antioxidant and free radical scavenging properties and its role in treating cerebrovascular diseases, is investigated for its protective effects against muscle ischemia-reperfusion injury in vitro and in vivo. Animals were randomly divided into the control group, receiving normal saline, and experimental groups, receiving varying doses of EGb761 (25/50/100/200 mg/kg). A 2-h hind limb tourniquet-induced ischemia was followed by reperfusion. Blood samples collected pre-ischemia and 24 h post-reperfusion, along with muscle tissue samples after 24 h, demonstrated that EGb761 at 1000 µg/mL effectively inhibited IL-6 and TNF-α secretion in RAW 264.7 cells without cytotoxicity. EGb761 significantly reduced nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and increased glutathione (GSH) levels compared to the control after 24 h. Muscle tissue sections revealed more severe damage in the control group, indicating EGb761's potential in mitigating inflammatory responses and oxidative stress during ischemia-reperfusion injury, effectively protecting against muscle damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ginkgo biloba , Hindlimb , Muscle, Skeletal , Plant Extracts , Reperfusion Injury , Animals , Ginkgo biloba/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Hindlimb/blood supply , Male , Rats , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ginkgo Extract
7.
Chem Soc Rev ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855878

ABSTRACT

Seawater electrolysis for the production of fuels and chemicals involved in onshore and offshore plants powered by renewable energies offers a promising avenue and unique advantages for energy and environmental sustainability. Nevertheless, seawater electrolysis presents long-term challenges and issues, such as complex composition, potential side reactions, deposition of and poisoning by microorganisms and metal ions, as well as corrosion, thus hindering the rapid development of seawater electrolysis technology. This review focuses on the production of value-added fuels (hydrogen and beyond) and fine chemicals through seawater electrolysis, as a promising step towards sustainable energy development and carbon neutrality. The principle of seawater electrolysis and related challenges are first introduced, and the redox reaction mechanisms of fuels and chemicals are summarized. Strategies for operating anodes and cathodes including the development and application of chloride- and impurity-resistant electrocatalysts/membranes are reviewed. We comprehensively summarize the production of fuels and chemicals (hydrogen, carbon monoxide, sulfur, ammonia, etc.) at the cathode and anode via seawater electrolysis, and propose other potential strategies for co-producing fine chemicals, even sophisticated and electronic chemicals. Seawater electrolysis can drive the oxidation and upgrading of industrial pollutants or natural organics into value-added chemicals or degrade them into harmless substances, which would be meaningful for environmental protection. Finally, the perspective and prospects are outlined to address the challenges and expand the application of seawater electrolysis.

8.
Heliyon ; 10(10): e31620, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831806

ABSTRACT

Background: Oxidative stress plays a significant role in the pathogenesis of many retinal diseases. However, only a few systematic bibliometric studies have been conducted. This study aims to visualize research hotspots and developmental trends in oxidative stress in the retina from 2013 to 2023 by analyzing bibliometric data. Methods: We retrieved papers on oxidative stress in the retina published between 2013 and 2023 from the Web of Science Core Collection. The data were visually analyzed using CiteSpace and VOSviewer software. Results: The total number of 2100 publications were included in the analysis. An overall increasing trend in the number of publications is observed between 2013 and 2023. Chinese publications were the most contributive, but United States publications were the most influential. Shanghai Jiao Tong University was the most active and prolific institution. Antioxidants was the most productive journal, while Oxidative Medicine and Cellular Longevity were the journals with the most-cited articles. Kaarniranta K, from Finland, was the most productive and influential author. Examination of co-cited references revealed that researchers in the field are primarily focused on investigating the molecular mechanisms, preventive strategies, and utilization of antioxidants to address retinal oxidative damage. Diabetic retinopathy, endothelial growth factor, retinitis pigmentosa, retinal degeneration, antioxidant response, retinal ganglion cells, and genes are the research hotspots in this field. Metabolism, sodium iodate, and system are at the forefront of research in this field. Conclusion: Attention toward retinal oxidative stress has increased over the past decade. Current research focuses on the mechanisms of retinal diseases related to oxidative stress and the experimental study of antioxidants in retinal diseases, which may continue to be a trend in the future.

9.
BMC Med ; 22(1): 253, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902735

ABSTRACT

BACKGROUND: Cognitive dysfunction is one of the common symptoms in patients with major depressive disorder (MDD). Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been studied separately in the treatment of cognitive dysfunction in MDD patients. We aimed to investigate the effectiveness and safety of rTMS combined with tDCS as a new therapy to improve neurocognitive impairment in MDD patients. METHODS: In this brief 2-week, double-blind, randomized, and sham-controlled trial, a total of 550 patients were screened, and 240 MDD inpatients were randomized into four groups (active rTMS + active tDCS, active rTMS + sham tDCS, sham rTMS + active tDCS, sham rTMS + sham tDCS). Finally, 203 patients completed the study and received 10 treatment sessions over a 2-week period. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess patients' cognitive function at baseline and week 2. Also, we applied the 24-item Hamilton Depression Rating Scale (HDRS-24) to assess patients' depressive symptoms at baseline and week 2. RESULTS: After 10 sessions of treatment, the rTMS combined with the tDCS group showed more significant improvements in the RBANS total score, immediate memory, and visuospatial/constructional index score (all p < 0.05). Moreover, post hoc tests revealed a significant increase in the RBANS total score and Visuospatial/Constructional in the combined treatment group compared to the other three groups but in the immediate memory, the combined treatment group only showed a better improvement than the sham group. The results also showed the RBANS total score increased significantly higher in the active rTMS group compared with the sham group. However, rTMS or tDCS alone was not superior to the sham group in terms of other cognitive performance. In addition, the rTMS combined with the tDCS group showed a greater reduction in HDRS-24 total score and a better depression response rate than the other three groups. CONCLUSIONS: rTMS combined with tDCS treatment is more effective than any single intervention in treating cognitive dysfunction and depressive symptoms in MDD patients. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2100052122).


Subject(s)
Cognition , Depressive Disorder, Major , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Male , Female , Transcranial Direct Current Stimulation/methods , Double-Blind Method , Adult , Transcranial Magnetic Stimulation/methods , Middle Aged , Cognition/physiology , Treatment Outcome , Combined Modality Therapy , Young Adult
10.
Article in English | MEDLINE | ID: mdl-38828789

ABSTRACT

The aim of this study was to validate the preventive effects of koumine (KM), a monoterpene indole alkaloid, on gouty arthritis (GA) and to explore its possible mechanisms. C57BL/6 mice were intraperitoneally administered KM (0.8, 2.4 or 7.2 mg/kg), colchicine (3.0 mg/kg) or sterile saline. One hour later, a monosodium urate (MSU) suspension was injected into the right hind paws of the mice to establish an acute gout model. Inflammation symptoms were evaluated at 0, 3, 6, 12 and 24 h, and the mechanical withdrawal threshold was evaluated at 0, 6 and 24 h. After 24 h, the mice were euthanized, and the joint tissue, kidney and blood were collected for subsequent experiments. Histological examination and antioxidant enzyme, kidney index and serum uric acid (UA) measurements were taken. The expression levels of the signalling pathway components were determined. KM effectively alleviated the symptoms of redness, swelling and pain; counteracted inflammatory cell infiltration; and increased antioxidant enzyme levels, reduced kidney index and seru UA levels through regulating UA excretion in MSU-induced mice. The expression of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) signalling pathway proteins and mRNA were reduced in the KM group. These results suggest that KM may be effective in alleviating GA through the TLR4/NF-κB/NLRP3 pathway.

11.
Small ; : e2401558, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829043

ABSTRACT

By primarily adjusting the reagent amounts, particularly the volume of AgNO3 solution introduced, Ag2O cubes with decreasing sizes from 440 to 79 nm, octahedra from 714 to 106 nm, and rhombic dodecahedra from 644 to 168 nm are synthesized. 733 nm cuboctahedra are also prepared for structural analysis. With in-house X-ray diffraction (XRD) peak calibration, shape-related peak shifts are recognizable. Synchrotron XRD measurements at 100 K reveal the presence of bulk and surface layer lattices. Bulk cell constants also deviate slightly. They show a negative thermal expansion behavior with shrinking cell constants at higher temperatures. The Ag2O crystals exhibit size- and facet-dependent optical properties. Bandgaps red-shift continuously with increasing particle sizes. Optical facet effect is also observable. Moreover, synchrotron XRD peaks of a mixture of Cu2O rhombicuboctahedra and edge- and corner-truncated cubes exposing all three crystal faces can be deconvoluted into three components with the bulk and the [111] microstrain phase as the major component. Interestingly, while the unheated Cu2O sample shows clear diffraction peak asymmetry, annealing the sample to 450 K yields nearly symmetric peaks even when returning the sample to room temperature, meaning even moderately high temperatures can permanently change the crystal lattice.

12.
Article in English | MEDLINE | ID: mdl-38922492

ABSTRACT

Microbial proteins represent a promising solution to address the escalating global demand for protein, particularly in regions with limited arable land. Yeasts, such as Saccharomyces cerevisiae, are robust and safe protein-producing strains. However, the utilization of non-conventional yeast strains for microbial protein production has been hindered, partly due to a lack of comprehensive understanding of protein production traits. In this study, we conducted experimental analyses focusing on the growth, protein content, and amino acid composition of nine yeast strains, including one S. cerevisiae strain, three Yarrowia lipolytica strains, and five Pichia spp. strains. We identified that, though Y. lipolytica and Pichia spp. strains consumed glucose at a slower rate compared to S. cerevisiae, Pichia spp. strains showed a higher cellular protein content, and Y. lipolytica strains showed a higher glucose-to-biomass/protein yield and methionine content. We further applied computational approaches to explain that metabolism economy was the main underlying factor for the limited amount of scarce/carbon-inefficient amino acids (such as methionine) within yeast cell proteins. We additionally verified that the specialized metabolism was a key reason for the high methionine content in Y. lipolytica strains, and proposed Y. lipolytica strain as a potential producer of high-quality single-cell protein rich in scarce amino acids. Through experimental evaluation, we identified Pichia jadinii CICC 1258 as a potential strain for high-quality protein production under unfavorable pH/temperature conditions. Our work suggests a promising avenue for optimizing microbial protein production, identifying the factors influencing amino acid composition, and paving the way for the use of unconventional yeast strains to meet the growing protein demands.

13.
Environ Int ; 190: 108846, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38925006

ABSTRACT

Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale.

14.
Article in English | MEDLINE | ID: mdl-38936970

ABSTRACT

INTRODUCTION: Chemotherapy-induced peripheral neuropathy (CIPN) affects patients' quality of life and treatment effectiveness. Gabapentinoids, like gabapentin and pregabalin, are often used for CIPN treatment, but their efficacy and safety remain uncertain. This study reviews and analyses randomised controlled trial data on this topic. MATERIALS/METHODS: We searched PubMed, Embase and Cochrane CENTRAL until 29 August 2022 for studies on gabapentinoid use in CIPN. Meta-analysis was performed using RevMan V.5.4 and the Metafor package in R. Outcomes included pain scores, quality of life and adverse drug events. RESULTS: For the prevention setting, our meta-analysis shows that pregabalin did not significantly improve average pain (standardised mean difference (SMD) -0.14, 95% CI -0.51 to 0.23; I2=26% (95% CI 0% to >98%)) or quality of life (mean difference (MD) 2.5, 95% CI -4.67 to 9.67; p=0.49) in preventing CIPN compared with placebo. However, it showed a potential trend towards reducing the worst pain (SMD -0.28, 95% CI -0.57 to 0.01; I2=0% (95% CI 0% to 98%; p=0.06)). For the treatment setting, some studies have shown a potential therapeutic effect of gabapentinoids. However, the results are not consistent between studies. Given the studies' heterogeneity, a meta-analysis in treatment setting was not performed. CONCLUSION: There is limited evidence to support the use of gabapentinoids in CIPN. In prevention setting, gabapentinoids do not significantly prevent CIPN. In treatment setting, studies have been inconsistent in their conclusions, lacking definitive benefits over placebo. More comprehensive and higher quality research is needed in the future. PROSPERO REGISTRATION NUMBER: CRD42022361193.

15.
Front Psychol ; 15: 1376180, 2024.
Article in English | MEDLINE | ID: mdl-38939230

ABSTRACT

Background: This study investigated the central symptom within the depression network and examined the relationship between social activities and depressive symptoms among migrant middle-aged and older adults in China. Methods: We analyzed data from 1,926 migrants aged 45 and older, derived from the 2018 China Health and Retirement Longitudinal Study (CHARLS). Using network analysis, we identified the central depressive symptom and assessed the association between various social activities and depressive symptoms. Results: Network analysis revealed that depressed mood was the most central symptom. Regarding mitigation of depressive symptoms, informal social activities predominantly influenced positive emotions and somatic symptoms. Formal activities were mainly revealed through positive emotions. Solitary activities were manifested primarily through positive emotions and somatic symptoms. In addition, informal and solitary activities showed a stronger correlation with the alleviation of depressive symptoms compared to formal activities. Conclusion: The findings underscore the importance of addressing depressed mood in treating depression among migrant middle-aged and older adults. Recognizing the differential impacts of various social activities can aid in the development of customized prevention and intervention strategies aimed at enhancing the mental well-being of this demographic in China.

16.
Exp Neurol ; 379: 114841, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821198

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia, and its causes are currently diverse and not fully understood. In a previous study, we discovered that short-term treatment with miracle fruit seed (MFS) had a therapeutic effect on AD model mice, however, the precise mechanism behind the effect remains unclear. In this research, we aimed to establish the efficacy and safety of long-term use of MFS in AD model mice. A variety of cytokines and chemokines have been implicated in the development of AD. Previous studies have validated a correlation between the expression levels of C-X-C chemokine receptor type 4 (CXCR4) and disease severity in AD. In this research, we observed an upregulation of CXCR4 expression in hippocampal tissues in the AD model group, which was then reversed after MFS treatment. Moreover, CXCR4 knockout led to improving cognitive function in AD model mice, and MFS showed the ability to regulate CXCR4 expression. Finally, our findings indicate that CXCR4 knockout and long-term MFS treatment produce comparable effects in treating AD model mice. In conclusion, this research demonstrates that therapeutic efficacy and safety of long-term use of MFS in AD model mice. MFS treatment and the subsequent reduction of CXCR4 expression exhibit a neuroprotective role in the brain, highlighting their potential as therapeutic targets for AD.

17.
West J Emerg Med ; 25(3): 368-373, 2024 May.
Article in English | MEDLINE | ID: mdl-38801043

ABSTRACT

Introduction: Photokeratoconjunctivitis (PKC) is primarily caused by welding. However, inappropriate use of germicidal lamps, which have been widely used following the COVID-19 outbreak, can also cause PKC. Our goal in this study was to investigate the incidence of and changes in the causes of PKC during the coronavirus 2019 (COVID-19) pandemic. Methods: We conducted a single-center, retrospective observational study. The health records of patients who visited the emergency department in a tertiary care hospital from January 1, 2018-December 31, 2021 and were diagnosed with PKC, were reviewed. We then conducted an analysis to compare the characteristics of PKC before and after COVID-19 began and the features of PKC caused by welding and germicidal lamps. Results: There were 160 PKC cases with a clear etiology before the COVID-19 pandemic and 147 cases during the COVID-19 pandemic. No significant differences in age and gender were detected between the two groups. The incidence of PKC induced by the use of germicidal lamps during the COVID-19 pandemic was significantly higher (10.2%) than the incidence before the pandemic (3.1%). The ratio of females to males in the germicidal lamp subgroup was significantly higher than the ratio in the welding subgroup. Limitations included incomplete information due to the retrospective nature of the study, underestimation of incidence, and possible recall bias. Conclusion: In the era of COVID-19, clinicians should be aware of the hazards of germicidal lamps. Although the COVID-19 pandemic seems to show signs of easing, new infectious diseases that require protective measures could still emerge in the future. Therefore, injuries related to germicidal lamps deserve more public health attention.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Retrospective Studies , Male , Incidence , Female , Adult , Middle Aged , Keratoconjunctivitis/epidemiology , SARS-CoV-2 , Emergency Service, Hospital/statistics & numerical data , Pandemics , Aged
18.
ACS Nano ; 18(22): 14595-14604, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38758185

ABSTRACT

Defect engineering and nitrogen doping being effective strategies for modulating the surface chemical state of the carbon matrix have been widely explored to promote the catalytic activity in the territory of electrochemical energy storage and conversion devices. However, the controllable synthesis of carbon material with high-density specific defects and high nitrogen doping is still full of challenges. Here, we first synthesize one-dimensional necklace-like nitrogen-doped carbon nanochains (N-CNCs) with abundant defects on carbon fiber paper (CFP) by chemical vapor deposition (CVD) method. The resultant nanostructures are a bunch of interconnected carbon spheres with a hollow structure at the internode and present the complete one-dimensional nanochain configuration. Specifically, the N-CNCs with a corrugated surface possesses high content of sp3 defects (31.2%) and nitrogen (23.6 at %). Combining finite element analysis and experimental results, it reveals that the robust shear field generated by etching gas releasing from thermal decomposition of melamine in situ modulates the CVD process via changing the size and force environment of the metal catalyst droplets for formation of N-CNCs. Benefiting from the high ratio of sp3/sp2 and nitrogen doped on the surface, the N-CNCs@CFP displays a superior electrocatalytic performance for CO2RR, delivering CO Faradaic efficiency of 95.9% and a current density of 23.2 mA cm-2 at -0.86 V vs RHE. This work provides promising synthesis strategy and some inspirations for construction of ultradense and specific defects coupling with nitrogen doping sites into carbon materials to achieve high-efficiency electrocatalysis applications.

20.
SELECTION OF CITATIONS
SEARCH DETAIL
...