Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.948
Filter
1.
J Formos Med Assoc ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39003230

ABSTRACT

BACKGROUND/PURPOSE: The global incidence of lip and oral cavity cancer continues to rise, necessitating improved early detection methods. This study leverages the capabilities of computer vision and deep learning to enhance the early detection and classification of oral mucosal lesions. METHODS: A dataset initially consisting of 6903 white-light macroscopic images collected from 2006 to 2013 was expanded to over 50,000 images to train the YOLOv7 deep learning model. Lesions were categorized into three referral grades: benign (green), potentially malignant (yellow), and malignant (red), facilitating efficient triage. RESULTS: The YOLOv7 models, particularly the YOLOv7-E6, demonstrated high precision and recall across all lesion categories. The YOLOv7-D6 model excelled at identifying malignant lesions with notable precision, recall, and F1 scores. Enhancements, including the integration of coordinate attention in the YOLOv7-D6-CA model, significantly improved the accuracy of lesion classification. CONCLUSION: The study underscores the robust comparison of various YOLOv7 model configurations in the classification to triage oral lesions. The overall results highlight the potential of deep learning models to contribute to the early detection of oral cancers, offering valuable tools for both clinical settings and remote screening applications.

2.
J Chromatogr A ; 1730: 465121, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959659

ABSTRACT

Mechanistic models are powerful tools for chromatographic process development and optimization. However, hydrophobic interaction chromatography (HIC) mechanistic models lack an effective and logical parameter estimation method, especially for multi-component system. In this study, a parameter-by-parameter method for multi-component system (called as mPbP-HIC) was derived based on the retention mechanism to estimate the six parameters of the Mollerup isotherm for HIC. The linear parameters (ks,i and keq,i) and nonlinear parameters (ni and qmax,i) of the isotherm can be estimated by the linear regression (LR) and the linear approximation (LA) steps, respectively. The remaining two parameters (kp,i and kkin,i) are obtained by the inverse method (IM). The proposed method was verified with a two-component model system. The results showed that the model could accurately predict the protein elution at a loading of 10 g/L. However, the elution curve fitting was unsatisfactory for high loadings (12 g/L and 14 g/L), which is mainly attributed to the demanding experimental conditions of the LA step and the potential large estimation error of the parameter qmax. Therefore, the inverse method was introduced to further calibrate the parameter qmax, thereby reducing the estimation error and improving the curve fitting. Moreover, the simplified linear approximation (SLA) was proposed by reasonable assumption, which provides the initial guess of qmax without solving any complex matrix and avoids the problem of matrix unsolvable. In the improved mPbP-HIC method, qmax would be initialized by the SLA and finally determined by the inverse method, and this strategy was named as SLA+IM. The experimental validation showed that the improved mPbP-HIC method has a better curve fitting, and the use of SLA+IM reduces the error accumulation effect. In process optimization, the parameters estimated by the improved mPbP-HIC method provided the model with excellent predictive ability and reasonable extrapolation. In conclusion, the SLA+IM strategy makes the improved mPbP-HIC method more rational and can be easily applied to the practical separation of protein mixture, which would accelerate the process development for HIC in downstream of biopharmaceuticals.

3.
Nat Commun ; 15(1): 5955, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009594

ABSTRACT

Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.


Subject(s)
Autoantigens , RNA , Ribonucleoproteins , SS-B Antigen , Telomerase , Humans , Telomerase/metabolism , Telomerase/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , RNA/metabolism , RNA/genetics , Autoantigens/metabolism , Autoantigens/genetics , Telomere/metabolism , Telomere/genetics , HeLa Cells , Telomere Shortening , Protein Binding
4.
Nucleic Acids Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966995

ABSTRACT

Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.

5.
Br J Haematol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38981737

ABSTRACT

There are limited data on the optimal choice of anticoagulation in multiple myeloma (MM) patients receiving immunomodulatory drugs (IMiDs). We conducted a propensity score-matched cohort study using the TriNetX database to compare the efficacy and safety of factor Xa inhibitors and warfarin in this patient population. Compared to warfarin, factor Xa inhibitors had a similar risk of deep vein thrombosis (hazard ratio [HR]: 1.11 [95% CI: 0.50-2.46]) or pulmonary embolism (HR: 1.08 [95% CI: 0.59-2.00]). There were no differences in the risk of gastrointestinal or intracranial bleeding. Factor Xa inhibitor-treated patients had lower all-cause mortality (HR: 0.56 [95% CI: 0.36-0.86]) compared with warfarin. These data suggest that factor Xa inhibitors had similar safety and efficacy compared with warfarin for MM patients on IMiDs.

7.
BMC Cancer ; 24(1): 800, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965506

ABSTRACT

Drug resistance remains a significant challenge in the treatment of pancreatic cancer. The development of drug-resistant cell lines is crucial to understanding the underlying mechanisms of resistance and developing novel drugs to improve clinical outcomes. Here, a novel pancreatic cancer cell line, PDAC-X1, derived from Chinese patients has been established. PDAC-X1 was characterized by the immune phenotype, biology, genetics, molecular characteristics, and tumorigenicity. In vitro analysis revealed that PDAC-X1 cells exhibited epithelial morphology and cell markers (CK7 and CK19), expressed cancer-associated markers (E-cadherin, Vimentin, Ki-67, CEA, CA19-9), and produced pancreatic cancer-like organs in suspension culture. In vivo analysis showed that PDAC-X1 cells maintained tumorigenicity with a 100% tumor formation rate. This cell line exhibited a complex karyotype, dominated by subtriploid karyotypes. In addition, PDAC-X1 cells exhibited intrinsic multidrug resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil, and oxaliplatin. In conclusion, the PDAC-X1 cell line has been established and characterized, representing a useful and valuable preclinical model to study the underlying mechanisms of drug resistance and develop novel drug therapeutics to improve patient outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Animals , Mice , Drug Resistance, Multiple/genetics , Xenograft Model Antitumor Assays , Male , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use
8.
J Hazard Mater ; 476: 135166, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991635

ABSTRACT

Minimization of cadmium (Cd) accumulation in wheat grain (Triticum aestivum L.) is an important way to prevent Cd hazards to humans. However, little is known about the mechanisms of varietal variation of Cd accumulation in wheat grain. This study explores the physiological mechanisms of Cd bioaccumulation through field and hydroponic experiments on two wheat varieties of low-Cd-accumulating variety (L-6331) and high-Cd-accumulating variety (H-6049). Field study showed that average Cd accumulative rates in spikes of H-6049 were 1.57-fold of L-6331 after flowering, ultimately grain-Cd of H-6049 was 1.70-fold of L-6331 in Cd-contaminated farmland. The hydroponic experiment further confirmed that more vegetative tissues of L-6331 were involved in the remobilization of Cd, which jointly mitigated the process of Cd loaded to grains when leaf-cutting conducted after Cd stress. Additionally, the L1 and N1 of L-6331 play an especially important role in regulating Cd remobilization, and the larger EVB areas in N1 have the morphological feature that facilitates the transfer of Cd to L1. Overall results implied that low-Cd-accumulating variety initiated more trade-offs of reproductive growth and Cd remobilizatoin under Cd-stress after flowering compared with high-Cd-accumulating variety, and provided new insights into the processes of Cd loaded into wheat grains among different varieties.

9.
Langmuir ; 40(28): 14291-14302, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950193

ABSTRACT

The key to enhancing water electrolysis efficiency lies in selecting highly efficient catalysts. Currently, high-entropy alloys (HEAs) are utilized in electrocatalysis applications owing to their diverse elemental composition, disordered elemental distribution, and the high solubility of each element, endowing them with excellent catalytic performance. The experiments were conducted using isoatomic FeNiCrMo HEA as a precursor, with a high-activity three-dimensional nanoporous structure rapidly synthesized via electrochemical one-step dealloying in a choline chloride-thiourea (ChCl-TU) deep eutectic solvent (DES). The results indicate that the dealloyed Fe20Co20Ni20Cr20Mo20 HEA mainly consists of two phases: face-centered cubic and σ phases. The imbalance in the distribution of elements in these two phases leads to quite different corrosion speeds with the FCC phase being preferentially corroded. Furthermore, synergistic electron coupling between surface atoms in the three-dimensional nanoporous structure strengthens the behavior of the oxygen evolution reaction (OER). At a current density of 40 mA cm-2, the overpotential after dealloying decreased to 370 mV, demonstrating excellent stability. The technique demonstrated in this work provides a novel approach to improve the catalytic activity of OER.

10.
Anal Chem ; 96(28): 11448-11454, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38960938

ABSTRACT

Within pharmaceutical research, ensuring the enantiomeric purity of chiral compounds is critical. Specifically, chiral amines are a crucial category of compounds, due to their extensive therapeutic uses. However, the enantiomeric analysis of these compounds, particularly those with significant steric hindrance, remains a challenge. To address this issue, our research introduces a novel chiral 19F-tagged NNO palladium pincer probe, strategically engineered with an open binding site to accommodate bulky amines. This probe facilitates the enantiodifferentiation of such amines, as evidenced by the distinct 19F NMR signals generated by the enantiomers. Moreover, our findings highlight the probe's applicability in the chiral discrimination of various psychoactive substances, underscoring its potential for the identification of illegal stimulant use and contributing to forensic investigations.

11.
Am J Cancer Res ; 14(6): 3198-3199, 2024.
Article in English | MEDLINE | ID: mdl-39005678

ABSTRACT

[This corrects the article on p. 2598 in vol. 13, PMID: 37424807.].

12.
Hum Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012569

ABSTRACT

In this study, a novel pancreatic cancer cell line, termed pancreatic ductal adenocarcinoma (PDAC)-X3 cell line, was successfully derived from the primary tumor. Comprehensive analyses of its malignant phenotype, molecular properties, specific biomarkers, and histological features confirmed that PDAC-X3 cells serve as a valuable model for investigating the underlying mechanisms driving pancreatic carcinogenesis and advancing potential therapeutic strategies. The newly established cell line was continuously cultured for over 12 months and was stably passaged through more than 50 generations. Morphologically, PDAC-X3 cells displayed characteristics typical of epithelial tumors. The population doubling time for PDAC-X3 cells was determined to be 50 h. Karyotype analysis revealed that 75% of PDAC-X3 cells presented as hypotriploid, while 25% were sub-tetraploid, with representative karyotypes being 53 and XY der (1) inv (9) der (22). In suspension culture, PDAC-X3 cells efficiently formed organoids. Upon inoculation into BALB/C nude mice, these cells initiated the development of xenograft tumors, achieving a tumor formation rate of 33%. Morphologically, these xenografted tumors closely resembled the primary tumor. Drug sensitivity assays indicated that PDAC-X3 cells exhibited resistance to oxaliplatin but demonstrated sensitivity to 5-Fluorouracil (5-FU), gemcitabine, and paclitaxel. Immunohistochemical analysis revealed that CK7, CK19, E-cadherin, Vimentin, CA19-9 were positively expressed in PDAC-X3 cells. Meanwhile, the expression rate for Ki-67 was 30%, and that for CEA was not detected. Our findings underscore that PDAC-X3 represents a novel pancreatic cancer cell line, positioning it as a valuable model for basic research and the advancement of therapeutic strategies against pancreatic cancer.

13.
J Chin Med Assoc ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39017650

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a severe complication of coronavirus disease 2019 (COVID-19) and is associated with a higher risk of mortality. Understanding the risk factors contributing to COVID-19-related AKI and mortality before vaccination is important for the initiation of preventative measures and early treatment strategies. METHODS: This study included patients aged ≥18 years diagnosed with COVID-19 through polymerase chain reaction from May 2020 to July 2021, admitted in three local hospitals in Taiwan, with an extended follow-up until June 30, 2022. A median follow-up period of 250 days was used to assess AKI development and mortality. AKI was defined according to the Kidney Disease Improving Global Outcomes criteria. Multivariate Cox regression analysis of AKI and mortality-related risk factors was performed. RESULTS: Of the 720 hospitalized patients with COVID-19, 90 (22%) developed AKI. Moreover, 80%, 10.1%, and 8.9% of the patients had stage 1, 2, and 3 AKI, respectively. Patients with stage 1-3 AKI had significantly lower survival rates than those without AKI (p = 0.0012). The mean duration of post-admission AKI occurrence was 9.50 ± 11.32 days. Older age, hypoalbuminemia, and higher D-dimer and ferritin levels were associated with COVID-19 mortality. In COVID-19 AKI, in addition to older age and high D-dimer and ferritin levels, chronic kidney disease emerged as an independent risk factor. CONCLUSION: COVID-19-related AKI develops early, exhibits a temporal association with respiratory failure, and is linked to an unfavorable prognosis. The mortality rate increased according to the AKI stage (p = 0.0012). Age; albumin, D-dimer, and ferritin levels; and the underlying chronic kidney disease status upon admission are crucial factors for predicting AKI development, which increases the mortality risk. Monitoring the renal function not only within 10 days of COVID-19 onset, but also within one month after the disease onset.

14.
Fa Yi Xue Za Zhi ; 40(2): 135-142, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847027

ABSTRACT

OBJECTIVES: To investigate the application value of combining the Demirjian's method with machine learning algorithms for dental age estimation in northern Chinese Han children and adolescents. METHODS: Oral panoramic images of 10 256 Han individuals aged 5 to 24 years in northern China were collected. The development of eight permanent teeth in the left mandibular was classified into different stages using the Demirjian's method. Various machine learning algorithms, including support vector regression (SVR), gradient boosting regression (GBR), linear regression (LR), random forest regression (RFR), and decision tree regression (DTR) were employed. Age estimation models were constructed based on total, female, and male samples respectively using these algorithms. The fitting performance of different machine learning algorithms in these three groups was evaluated. RESULTS: SVR demonstrated superior estimation efficiency among all machine learning models in both total and female samples, while GBR showed the best performance in male samples. The mean absolute error (MAE) of the optimal age estimation model was 1.246 3, 1.281 8 and 1.153 8 years in the total, female and male samples, respectively. The optimal age estimation model exhibited varying levels of accuracy across different age ranges, which provided relatively accurate age estimations in individuals under 18 years old. CONCLUSIONS: The machine learning model developed in this study exhibits good age estimation efficiency in northern Chinese Han children and adolescents. However, its performance is not ideal when applied to adult population. To improve the accuracy in age estimation, the other variables can be considered.


Subject(s)
Age Determination by Teeth , Algorithms , Asian People , Machine Learning , Radiography, Panoramic , Humans , Adolescent , Child , Male , Female , Age Determination by Teeth/methods , Radiography, Panoramic/methods , China/ethnology , Child, Preschool , Young Adult , Mandible , Tooth/diagnostic imaging , Tooth/growth & development , Support Vector Machine , Decision Trees , Ethnicity , East Asian People
15.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877488

ABSTRACT

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

16.
ACS Omega ; 9(23): 25277-25282, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882064

ABSTRACT

High channel current of the high electron mobility transistors (HEMTs) and high relative responsivity of the photodetectors (PDs) were demonstrated in the AlGaN/AlN/GaN channel-stacking epitaxial structures. The interference properties of the X-ray curves indicated high-quality interfaces of the conductive channels. The AlGaN/AlN/GaN interfaces were observed clearly in the transmission electron microscope micrograph. The saturation I ds currents of the HEMT structures were increased by adding a number of channels. The conductive properties of the channel-stacking structures corresponded to the peaks of the transconductance (g m) spectra in the HEMT structures. The depletion-mode one- and two-channel HEMT structures can be operated at the cutoff region by increasing the reverse V gs bias voltages. Higher I ds current in the active state and lower current in the cutoff state were observed in the two-channel HEMT structure compared with one- and three-channel HEMT structures. For the channel-stacking metal-semiconductor-metal photodetector structures, the peak responsivity was observed at almost 300 nm incident monochromic light, which was increased by adding a number of channel layers. The channel current of the HEMT devices and the photocurrent in the PD devices were increased by adding a number of two-dimensional electron gas (2DEG) channels. By using a flat gate metal layer, the two-channel AlGaN/AlN/GaN HEMT structures exhibited a high I ds current, a low cutoff current, and a high peak g m value and have the potential for GaN-based power devices, fast portable chargers, and ultraviolet PD applications.

18.
Dent Mater ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851964

ABSTRACT

OBJECTIVES: To investigate a near-infrared-to-blue luminescence upconversion curing method for polymerizing resin cements under zirconia discs. METHODS: Lava zirconia discs of different thicknesses (0.5-2.0 mm) were manufactured. First, the transmittances of the NIR and two blue lights (BLs) (LED and halogen lights) through these discs were measured. Second, NaYF4:Yb3+/Tm3+ upconversion phosphor (UP) powder was milled into 0.5-µm particle sizes. A light-curable resin cement VariolinkII base was chosen as the control (UP0), and an experimental cement (UP5) was prepared by adding 5 % UPs. These two cements were examined using multiphoton excitation microscopy for particle distribution. UP5 and UP0 were polymerized with or without zirconia shielding then subjected to a microhardness test. A multifold analysis was performed to examine the effects of zirconia thickness, curing protocols (pure BL or combined BL and NIR curing), and cement type. RESULTS: The transmittance of NIR was superior to that of BL through zirconia discs of all thicknesses. UP particles were homogeneously distributed in UP5 and emitted blue luminescence under 980-nm NIR excitation. UP5 showed higher microhardness values than UP0 under any curing protocol or zirconia shielding condition. The combination of 20-s BL and 40-s NIR curing yielded the highest microhardness in uncovered UP5. However, combining 40-s BL and 20-s NIR curing surpassed the other groups when the zirconia discs were thicker than 0.5 mm. SIGNIFICANCE: NIR exhibits higher transmission through zirconia than BL. UP particles work as strengthen fillers and photosensitizers in cements. NIR upconversion curing could be a new strategy for polymerizing resin cements under thick zirconia restorations.

19.
Chem Biodivers ; : e202401093, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867371

ABSTRACT

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.

20.
Small ; : e2403448, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881353

ABSTRACT

Alcohol electrooxidation is pivotal for a sustainable energy economy. However, designing efficient electrocatalysts for this process is still a formidable challenge. Herein, palladium-selenium nanowires featuring distinct crystal phases: monoclinic Pd7Se2 and tetragonal Pd4.5Se for ethylene glycol electrooxidation reaction (EGOR) are synthesized. Notably, the supported monoclinic Pd7Se2 nanowires (m-Pd7Se2 NWs/C) exhibit superior EGOR activity, achieving a mass activity (MA) and specific activity (SA) of 10.4 A mgPd -1 (18.7 mA cm-2), which are 8.0 (6.7) and 10.4 (8.2) times versus the tetragonal Pd4.5Se and commercial Pd/C and surpass those reported in the literature. Furthermore, m-Pd7Se2 NWs/C displays robust catalytic activity for other alcohol electrooxidation. Comprehensive characterization and density functional theory (DFT) calculations reveal that the enhanced electrocatalytic performance is attributed to the increased formation of Pd0 on the high-index facets of the m-Pd7Se2 NWs, which lowers the energy barriers for the C─C bond dissociation in CHOHCHOH* and the CO* oxidation to CO2*. This study provides palladium-based alloy electrocatalysts exhibiting the highest mass activity reported to date for the electrooxidation of ethylene glycol, achieved through the crystalline phase engineering strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...