Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.240
Filter
1.
Article in English | MEDLINE | ID: mdl-38951110

ABSTRACT

Differentiation of induced pluripotent stem cells (iPSCs) is an extremely complex process that has proven difficult to study. In this research, we utilized nanotopography to elucidate details regarding iPSC differentiation by developing a nanodot platform consisting of nanodot arrays of increasing diameter. Subjecting iPSCs cultured on the nanodot platform to a cardiomyocyte (CM) differentiation protocol revealed several significant gene expression profiles that were associated with poor differentiation. The observed expression trends were used to select existing small-molecule drugs capable of modulating differentiation efficiency. BRD K98 was repurposed to inhibit CM differentiation, while iPSCs treated with NSC-663284, carmofur, and KPT-330 all exhibited significant increases in not only CM marker expression but also spontaneous beating, suggesting improved CM differentiation. In addition, quantitative polymerase chain reaction was performed to determine the gene regulation responsible for modulating differentiation efficiency. Multiple genes involved in extracellular matrix remodeling were correlated with a CM differentiation efficiency, while genes involved in the cell cycle exhibited contrasting expression trends that warrant further studies. The results suggest that expression profiles determined via short time-series expression miner analysis of nanodot-cultured iPSC differentiation can not only reveal drugs capable of enhancing differentiation efficiency but also highlight crucial sets of genes related to processes such as extracellular matrix remodeling and the cell cycle that can be targeted for further investigation. Our findings confirm that the nanodot platform can be used to reveal complex mechanisms behind iPSC differentiation and could be an indispensable tool for optimizing iPSC technology for clinical applications.

2.
J Immunother Cancer ; 12(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964786

ABSTRACT

BACKGROUND: Esophageal cancer (ESCA) is a form of malignant tumor associated with chronic inflammation and immune dysregulation. However, the specific immune status and key mechanisms of immune regulation in this disease require further exploration. METHODS: To investigate the features of the human ESCA tumor immune microenvironment and its possible regulation, we performed mass cytometry by time of flight, single-cell RNA sequencing, multicolor fluorescence staining of tissue, and flow cytometry analyses on tumor and paracancerous tissue from treatment-naïve patients. RESULTS: We depicted the immune landscape of the ESCA and revealed that CD8+ (tissue-resident memory CD8+ T cells (CD8+ TRMs) were closely related to disease progression. We also revealed the heterogeneity of CD8+ TRMs in the ESCA tumor microenvironment (TME), which was associated with their differentiation and function. Moreover, the subset of CD8+ TRMs in tumor (called tTRMs) that expressed high levels of granzyme B and immune checkpoints was markedly decreased in the TME of advanced ESCA. We showed that tTRMs are tumor effector cells preactivated in the TME. We then demonstrated that conventional dendritic cells (cDC2s) derived from intermediate monocytes (iMos) are essential for maintaining the proliferation of CD8+ TRMs in the TME. Our preliminary study showed that hypoxia can promote the apoptosis of iMos and impede the maturation of cDC2s, which in turn reduces the proliferative capacity of CD8+ TRMs, thereby contributing to the progression of cancer. CONCLUSIONS: Our study revealed the essential antitumor roles of CD8+ TRMs and preliminarily explored the regulation of the iMo/cDC2/CD8+ TRM immune axis in the human ESCA TME.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Esophageal Neoplasms , Tumor Microenvironment , Humans , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Monocytes/immunology , Monocytes/metabolism , Male , Female , CDC2 Protein Kinase/metabolism
3.
PLoS Pathog ; 20(6): e1012319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885290

ABSTRACT

Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.


Subject(s)
Biofilms , Candida albicans , Candidiasis , Catheter-Related Infections , Extracellular Traps , Fungal Proteins , Neutrophils , Humans , Biofilms/growth & development , Fungal Proteins/metabolism , Candidiasis/microbiology , Candidiasis/immunology , Catheter-Related Infections/microbiology , Neutrophils/immunology , Neutrophils/metabolism , Extracellular Traps/immunology , Catheters/microbiology , Gene Expression Regulation, Fungal
4.
Forensic Sci Int Genet ; 71: 103066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833776

ABSTRACT

In forensic practice, mixture stains containing various body fluids are common, presenting challenges for interpretation, particularly in multi-contributor mixtures. Traditional STR profiles face difficulties in such scenarios. Over recent years, RNA has emerged as a promising biomarker for body fluid identification, and mRNA polymorphism has shown excellent performance in identifying body fluid donors in previous studies. In this study, a massively parallel sequencing assay was developed, encompassing 202 coding region SNPs (cSNPs) from 45 body fluid/tissue-specific genes to identify both body fluid/tissue origin and the respective donors, including blood, saliva, semen, vaginal secretion, menstrual blood, and skin. The specificity was evaluated by examining the single-source body fluids/tissue and revealed that the same body fluid exhibited similar expression profiles and the tissue origin could be identified. For laboratory-generated mixtures containing 2-6 different components and mock case mixtures, the donor of each component could be successfully identified, except for the skin donor. The discriminatory power for all body fluids ranged from 0.997176329 (menstrual blood) to 0.99999999827 (blood). The concordance of DNA typing and mRNA typing for the cSNPs in this system was also validated. This cSNP typing system exhibits excellent performance in mixture deconvolution.


Subject(s)
Cervix Mucus , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , RNA, Messenger , Saliva , Semen , Humans , RNA, Messenger/genetics , Female , Semen/chemistry , Cervix Mucus/chemistry , Saliva/chemistry , Male , Body Fluids/chemistry , DNA Fingerprinting , Skin/chemistry , Menstruation , Forensic Genetics/methods , Tissue Donors , Sequence Analysis, RNA
5.
Ann Neurol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934512

ABSTRACT

OBJECTIVE: Although metabolic abnormalities are implicated in the etiology of neurodegenerative diseases, their role in the development of amyotrophic lateral sclerosis (ALS) remains a subject of controversy. We aimed to identify the association between metabolic syndrome (MetS) and the risk of ALS. METHODS: This study included 395,987 participants from the UK Biobank to investigate the relationship between MetS and ALS. Cox regression model was used to estimate hazard ratios (HR). Stratified analyses were performed based on gender, body mass index (BMI), smoking status, and education level. Mediation analysis was conducted to explore potential mechanisms. RESULTS: In this study, a total of 539 cases of ALS were recorded after a median follow-up of 13.7 years. Patients with MetS (defined harmonized) had a higher risk of developing ALS after adjusting for confounding factors (HR: 1.50, 95% CI: 1.19-1.89). Specifically, hypertension and high triglycerides were linked to a higher risk of ALS (HR: 1.53, 95% CI: 1.19-1.95; HR: 1.31, 95% CI: 1.06-1.61, respectively). Moreover, the quantity of metabolic abnormalities showed significant results. Stratified analysis revealed that these associations are particularly significant in individuals with a BMI <25. These findings remained stable after sensitivity analysis. Notably, mediation analysis identified potential metabolites and metabolomic mediators, including alkaline phosphatase, cystatin C, γ-glutamyl transferase, saturated fatty acids to total fatty acids percentage, and omega-6 fatty acids to omega-3 fatty acids ratio. INTERPRETATION: MetS exhibits a robust association with an increased susceptibility to ALS, particularly in individuals with a lower BMI. Furthermore, metabolites and metabolomics, as potential mediators, provide invaluable insights into the intricate biological mechanisms. ANN NEUROL 2024.

6.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885306

ABSTRACT

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

7.
Front Plant Sci ; 15: 1388365, 2024.
Article in English | MEDLINE | ID: mdl-38882575

ABSTRACT

Introduction: Soybean stem diameter (SD) and branch diameter (BD) are closely related traits, and genetic clarification of SD and BD is crucial for soybean breeding. Methods: SD and BD were genetically analyzed by a population of 363 RIL derived from the cross between Zhongdou41 (ZD41) and ZYD02878 using restricted two-stage multi-locus genome-wide association, inclusive composite interval mapping, and three-variance component multi-locus random SNP effect mixed linear modeling. Then candidate genes of major QTLs were selected and genetic selection model of SD and BD were constructed respectively. Results and discussion: The results showed that SD and BD were significantly correlated (r = 0.74, P < 0.001). A total of 93 and 84 unique quantitative trait loci (QTL) were detected for SD and BD, respectively by three different methods. There were two and ten major QTLs for SD and BD, respectively, with phenotypic variance explained (PVE) by more than 10%. Within these loci, seven genes involved in the regulation of phytohormones (IAA and GA) and cell proliferation and showing extensive expression of shoot apical meristematic genes were selected as candidate genes. Genomic selection (GS) analysis showed that the trait-associated markers identified in this study reached 0.47-0.73 in terms of prediction accuracy, which was enhanced by 6.56-23.69% compared with genome-wide markers. These results clarify the genetic basis of SD and BD, which laid solid foundation in regulation gene cloning, and GS models constructed could be potentially applied in future breeding programs.

8.
Brain Behav ; 14(6): e3579, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841824

ABSTRACT

BACKGROUND: Gut dysbiosis has been established as a characteristic of schizophrenia (SCH). However, the signatures regarding SCH patients with prominent negative symptoms (SCH-N) in young adults have been poorly elucidated. METHODS: Stool samples were obtained from 30 young adults with SCH-N, 32 SCH patients with prominent positive symptoms (SCH-P) along with 36 healthy controls (HCs). Microbial diversity and composition were analyzed by 16S rRNA gene sequencing. Meanwhile, psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). RESULTS: There is a significant difference in ß-diversity but not α-diversity indexes among the three groups. Moreover, we found a higher abundance of Fusobacteria and Proteobacteria phyla and a lower abundance of Firmicutes phyla in SCH-N when compared with HC. Besides, we identified a diagnostic potential panel comprising six genera (Coprococcus, Monoglobus, Prevotellaceae_NK3B31_group, Escherichia-Shigella, Dorea, and Butyricicoccus) that can distinguish SCH-N from HC (area under the curve = 0.939). However, the difference in microbial composition between the SCH-N and SCH-P is much less than that between SCH-N and the HC, and SCH-N and SCH-P cannot be effectively distinguished by gut microbiota. CONCLUSION: The composition of gut microbiota was changed in the patients with SCH-N, which may help in further understanding of pathogenesis in young adults with SCH-N.


Subject(s)
Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Schizophrenia , Humans , Schizophrenia/microbiology , RNA, Ribosomal, 16S/genetics , Male , Young Adult , Female , Adult , Feces/microbiology , Dysbiosis/microbiology
9.
Inflamm Regen ; 44(1): 30, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844990

ABSTRACT

BACKGROUND: The chemokine CX3CL1 has been reported to play an important role in optic nerve protection, but the underlying mechanism is still unclear. CX3CR1, the only receptor of CX3CL1, is specifically expressed on retinal microglia, whose activation plays a role in the pathological process of optic nerve injury. This study aimed to evaluate whether CX3CL1 exerts optic neuroprotection by affecting the activation of microglia by combining with CX3CR1. METHODS: A mouse model of distal optic nerve trauma (ONT) was used to evaluate the effects of the CX3CL1-CX3CR1 axis on the activation of microglia and survival or axonal regeneration of retinal ganglion cells (RGCs). The activation of microglia, loss of RGCs, and damage to visual function were detected weekly till 4 weeks after modeling. CX3CL1 was injected intravitreally immediately or delayed after injury and the status of microglia and RGCs were examined. RESULTS: Increases in microglia activation and optic nerve damage were accompanied by a reduced production of the CX3CL1-CX3CR1 axis after the distal ONT modeling. Both immediate and delayed intravitreal injection of CX3CL1 inhibited microglia activation, promoted survival of RGCs, and improved axonal regenerative capacity. Injection with CX3CL1 was no longer effective after 48 h post ONT. The CX3CL1-CX3CR1 axis promotes survival and axonal regeneration, as indicated by GAP43 protein and gene expression, of RGCs by inhibiting the microglial activation after ONT. CONCLUSIONS: The CX3CL1-CX3CR1 axis could promote survival and axonal regeneration of RGCs by inhibiting the microglial activation after optic nerve injury. The CX3CL1-CX3CR1 axis may become a potential target for the treatment of optic nerve injury. Forty-eight hours is the longest time window for effective treatment after injury. The study is expected to provide new ideas for the development of targeted drugs for the repair of optic nerve.

10.
Environ Sci Pollut Res Int ; 31(29): 42357-42371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872039

ABSTRACT

Identifying the key determinants of heavy metal(loid) accumulation in rice and quantifying their contributions are critical for precise prediction of heavy metal(loid) concentrations in rice and the formulation of effective pollution control strategies. The accumulation of heavy metal(loid)s in rice can be influenced by both natural and anthropogenic factors, which may interact with each other. However, distinguishing the independent roles (main effects) from interactive effects and quantifying their impacts separately pose challenges. To address this knowledge gap, we employed TreeExplainer-based SHAP and random forest algorithms in this study to quantitatively estimate the primary influencing factors and their main and interactive effects on heavy metal(loid)s in rice. Our findings reveal that soil cadmium (SCd) and rice cultivation time (C_TIME) were the primary contributors to rice cadmium (RCd) and rice arsenic (RAs), respectively. Soil lead (SPb) and sampling distances from roads significantly contributed to rice lead (RPb). Additionally, we identified significant interactive effects of SCd and C_TIME, C_TIME and RCd, and RCd and rice variety on RCd, RAs, and RPb, respectively, emphasizing their significance. These insights are pivotal in improving the accuracy of heavy metal(loid) concentration predictions in rice and offering theoretical guidance for the formulation of pollution control measures.


Subject(s)
Environmental Monitoring , Metals, Heavy , Oryza , Soil Pollutants , Oryza/metabolism , Soil/chemistry , Cadmium
11.
J Hazard Mater ; 476: 134874, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38901259

ABSTRACT

Sulfonylurea (SU) herbicides are widely used and often detected in environmental matrices and have toxic effects on ecosystems and plant development. However, the interaction between SU and soil-plant metabolism during the whole wheat growth cycle remains poorly investigated. Field trials demonstrated that bensulfuron methyl exposure reduced wheat height and a thousand grains' weight, disrupting the critical metabolic pathways, including linoleic acid and amino acid metabolism in the maturity stage. During different growth processes, bensulfuron methyl exposure decreases wheat soil and plants' defense-related indole alkaloid compounds, such as benzoxazinoids and melatonin. Microbial sequencing results showed that bensulfuron methyl treated decreased the abundance of beneficial microorganisms (Gammaproteobacteria, Bacteroidia, and Blastocatella) in the rhizosphere soil, which positively correlated with the inhibition of soil enzyme activity and the secretion of allelopathic substances (benzoxazinoids and melatonin). Molecular docking further confirmed that bensulfuron methyl affects protein molecular structure by establishing hydrogen bonds, which disequilibrate wheat benzoxazinoids and melatonin metabolism. Therefore, bensulfuron methyl exposure disrupted the interaction between soil microorganisms and indole alkaloid metabolism, hindering plant development. This study provides constructive insights into the environmental risks of herbicides and agricultural product safety throughout wheat development.

12.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1806-1832, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914493

ABSTRACT

Excessive accumulation of nitrogen is a major cause of water eutrophication. Developing an inexpensive and efficient nitrogen removal technology is therefore essential for wastewater purification. The microbial technology for nitrogen removal has been widely used for its low cost, high efficiency, and strong environmental adaptability. Most recently, with the advances in synthetic biotechnology, artificial multicellular systems have been sufficiently developed and exhibited unique definability and controllability. Compared with those in the natural microbial consortia, the nitrogen removal pathways and environmental response mechanisms are easy to be clarified in the artificial multicellular systems, which allow for efficient nitrogen removal under low cellular metabolic loading. Therefore, artificial multicellular systems demonstrate great application potential in the purification of wastewater, including landfill leachate, industrial wastewater, seawater aquaculture wastewater, and domestic sewage. We focused on the design, building, and application of artificial multicellular systems for nitrogen removal from wastewater. Specifically, we summarized the functional microorganisms and their nitrogen removal mechanisms, introduced the design principles and building methods of artificial multicellular systems, illustrated the application of artificial multicellular systems with examples, and prospected the future research trend in nitrogen removal from wastewater. The conclusion is expected to provide new insights and efficient strategies for optimizing the microbial nitrogen removal from wastewater.


Subject(s)
Nitrogen , Wastewater , Wastewater/chemistry , Nitrogen/metabolism , Nitrogen/isolation & purification , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Water Purification/methods , Bacteria/metabolism , Bacteria/isolation & purification , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/isolation & purification
13.
Radiol Cardiothorac Imaging ; 6(3): e230234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695742

ABSTRACT

Purpose To compare the tissue adequacy and diagnostic accuracy of US-guided biopsies of peripheral pulmonary lesions (PPLs) with and without contrast agents. Materials and Methods A retrospective study was conducted at four medical centers in patients with PPLs who underwent US-guided percutaneous transthoracic needle biopsy (PTNB) between January 2017 and October 2022. The patients were divided into contrast-enhanced US (CEUS) and US groups based on whether prebiopsy CEUS evaluation was performed. Tissue adequacy and the diagnostic accuracy of PTNB, stratified by lesion size, were analyzed and compared between groups. A propensity score matching (PSM) analysis was conducted using the nearest-neighbor matching method. Results A total of 1027 lesions were analyzed, with 634 patients (mean age, 59.4 years ± 13.0 [SD]; 413 male) in the US group and 393 patients (mean age, 61.2 years ± 12.5; 270 male) in the CEUS group. The CEUS group produced more acceptable samples than the US group (98.2% vs 95.7%; P = .03) and achieved higher diagnostic accuracy (96.9% vs 94.2%; P = .04), with no evidence of a difference in sensitivity (96.7% vs 94.0%; P = .06). PSM and stratified analyses (n = 358 per group) indicated higher tissue adequacy (99.0% vs 95.7%; P = .04) and diagnostic accuracy (98.5% vs 92.9%; P = .006) in the CEUS group compared with the US group for 2-7-cm PPLs but not for lesions larger than 7 cm. Conclusion PTNB with prebiopsy CEUS evaluation demonstrated significantly better tissue adequacy and diagnostic accuracy compared with US guidance alone for PPLs ranging from 2 to 7 cm, with similar biopsy performance achieved between groups for lesions larger than 7 cm. Keywords: Contrast Material, Thoracic Diseases, Ultrasonography, Image-Guided Biopsy © RSNA, 2024.


Subject(s)
Contrast Media , Image-Guided Biopsy , Ultrasonography, Interventional , Humans , Male , Female , Middle Aged , Retrospective Studies , Image-Guided Biopsy/methods , Ultrasonography, Interventional/methods , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Lung/pathology , Lung/diagnostic imaging , Aged
14.
J Org Chem ; 89(10): 7138-7147, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38695505

ABSTRACT

An economical one-pot, three-step reaction sequence of readily available 2-monosubstituted 1,3-diketones and 1,4-benzoquinones has been explored for the facile access of 2,3-dialkyl-5-hydroxybenzofurans. By using cheap K2CO3 and conc. HCl as the reaction promoters, the reaction occurs smoothly via sequential Michael addition, aromatization, retro-Claisen, deacylation, hemiketalization, and dehydration processes under mild conditions in a practical manner. Additionally, an interesting phenomenon was observed during the derivatization studies, where the dihydroquinoline was converted into tetrahydroquinoline and quinoline products, respectively, via a disproportionation process.

15.
J Hazard Mater ; 473: 134542, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776809

ABSTRACT

Extensively applied glufosinate (GLU) will trigger molecular alterations in nontarget tea plants (Camellia sinensis), which inadvertently disturbs metabolites and finally affects tea quality. The mechanistic response of tea plants to GLU remains unexplored. This study investigated GLU residue behavior, the impact on photosynthetic capacity, specialized metabolites, secondary pathways, and transcript levels in tea seedlings. Here, GLU mainly metabolized to MPP and accumulated more in mature leaves than in tender ones. GLU catastrophically affected photosynthesis, leading to leaf chlorosis, and decreased Fv/Fm and chlorophyll content. Physiological and biochemical, metabolomics, and transcriptomics analyses were integrated. Showing that GLU disrupted the photosynthetic electron transport chain, triggered ROS and antioxidant system, and inhibited photosynthetic carbon fixation. GLU targeted glutamine synthetase (GS) leading to the accumulation of ammonium and the inhibition of key umami L-theanine, causing a disorder in nitrogen metabolism, especially for amino acids synthesis. Interestingly, biosynthesis of primary flavonoids was sacrificed for defensive phenolic acids and lignin formulation, leading to possible losses in nutrition and tenderness in leaves. This study revealed the defense intricacies and potential quality deterioration of tea plants responding to GLU stress. Valuable insights into detoxification mechanisms for non-target crops post-GLU exposure were offered.


Subject(s)
Aminobutyrates , Camellia sinensis , Photosynthesis , Plant Leaves , Camellia sinensis/genetics , Camellia sinensis/metabolism , Camellia sinensis/drug effects , Aminobutyrates/toxicity , Plant Leaves/metabolism , Plant Leaves/drug effects , Photosynthesis/drug effects , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Stress, Physiological , Metabolomics , Gene Expression Regulation, Plant/drug effects , Seedlings/drug effects , Seedlings/metabolism , Herbicides/toxicity , Multiomics , Glutamates
16.
Heliyon ; 10(9): e30014, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699009

ABSTRACT

Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.

17.
Article in English | MEDLINE | ID: mdl-38771683

ABSTRACT

Sleep staging plays a critical role in evaluating the quality of sleep. Currently, most studies are either suffering from dramatic performance drops when coping with varying input modalities or unable to handle heterogeneous signals. To handle heterogeneous signals and guarantee favorable sleep staging performance when a single modality is available, a pseudo-siamese neural network (PSN) to incorporate electroencephalography (EEG), electrooculography (EOG) characteristics is proposed (PSEENet). PSEENet consists of two parts, spatial mapping modules (SMMs) and a weight-shared classifier. SMMs are used to extract high-dimensional features. Meanwhile, joint linkages among multi-modalities are provided by quantifying the similarity of features. Finally, with the cooperation of heterogeneous characteristics, associations within various sleep stages can be established by the classifier. The evaluation of the model is validated on two public datasets, namely, Montreal Archive of Sleep Studies (MASS) and SleepEDFX, and one clinical dataset from Huashan Hospital of Fudan University (HSFU). Experimental results show that the model can handle heterogeneous signals, provide superior results under multimodal signals and show good performance with single modality. PSEENet obtains accuracy of 79.1%, 82.1% with EEG, EEG and EOG on Sleep-EDFX, and significantly improves the accuracy with EOG from 73.7% to 76% by introducing similarity information.

18.
Ann Hematol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805037

ABSTRACT

In this prospective, multicenter, Phase 2 clinical trial (NCT02987244), patients with peripheral T-cell lymphomas (PTCLs) who had responded to first-line chemotherapy with cyclophosphamide, doxorubicin or epirubicin, vincristine or vindesine, etoposide, and prednisone (Chi-CHOEP) were treated by autologous stem cell transplantation (ASCT) or with chidamide maintenance or observation. A total of 85 patients received one of the following interventions: ASCT (n = 15), chidamide maintenance (n = 44), and observation (n = 26). estimated 3 PFS and OS rates were 85.6%, 80.8%, and 49.4% (P = 0.001). The two-year OS rates were 85.6%, 80.8%, and 69.0% (P = 0.075).The ASCT and chidamide maintenance groups had significantly better progression-free survival (PFS) than the observation group (P = 0.001, and P = 0.01, respectively). The overall survival (OS) differed significantly between the chidamide maintenance group and the observation group ( P = 0.041). The multivariate and propensity score matching analyses for PFS revealed better outcomes in the subjects in the chidamide maintenance than observation groups (P = 0.02). The ASCT and chidamide maintenance groups had significant survival advantages over the observation group. In the post-remission stage of the untreated PTCL patients, single-agent chidamide maintenance demonstrated superior PFS and better OS than observation. Our findings highlight the potential benefit of chidamide in this patient subset, warranting further investigation through larger prospective trials. Clinical trial registration: clinicaltrial.gov, NCT02987244. Registered 8 December 2016, http://www.clinicaltrials.gov/ct2/show/NCT02987244 .

19.
Front Neurosci ; 18: 1394169, 2024.
Article in English | MEDLINE | ID: mdl-38737098

ABSTRACT

Objective: This study aims to compare gray matter volume changes in patients with chronic kidney disease (CKD) undergoing peritoneal dialysis (PD) and hemodialysis (HD) using voxel-based morphometry (VBM). Methods: A total of 27 PD patients, 25 HD patients, and 42 healthy controls were included. VBM analysis was performed, and cognitive function was assessed using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment Scale (MoCA). The correlation between cognitive function and changes in brain gray matter volume was analyzed. Results: Both peritoneal dialysis and hemodialysis patients had partial gray matter volume reduction compared to the controls, but the affected brain regions were not uniform. The hemodialysis patients had greater volume reduction in certain brain regions than the PD patients. The MMSE and MoCA scores were positively correlated with gray matter volume changes. Conclusion: Different dialysis modalities cause damage to specific areas of the brain, which can be detected using VBM. VBM, combined with cognitive function assessment, can help detect structural brain changes and cognitive impairment in patients with different dialysis modalities. The comprehensive application of VBM in the field of neurological function deserves further exploration.

20.
World Neurosurg ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735563

ABSTRACT

OBJECTIVE: Spinal cord injury (SCI) is a devastating condition that significantly decreases the patient's quality of life. Therefore, treatments that can facilitate nerve regeneration, reduce complications, and increase quality of life are valuable for these patients. In this study, we aimed to assess nerve bypass surgery's feasibility and clinical outcomes by transferring the intercostal nerves (ICNs) into the spinal cord. METHODS: Eight patients with complete thoracic SCI and delayed presentation more than a year after the injury were analyzed retrospectively. All patients underwent nerve bypass surgery with the transfer of two pairs of ICNs from proximal to the injury site to the anterolateral spinal cord, followed by duraplasty with fascia grafting to close the dura. RESULTS: Six of the eight (75%) patients demonstrated motor and sensory improvements, based on the American Spinal Cord Injury Association score. Three patients demonstrated a limited recovery of motor function that could be independently triggered without ICN initiation. Five patients demonstrated evidence of cerebrospinal fluid (CSF) leakage after surgery; however, only one patient complained of a headache. CONCLUSION: Spinal cord bypass surgery is a potential reconstruction method to treat chronic complete thoracic SCI with functional improvements, and is worth further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...