Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.510
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000251

ABSTRACT

Ubiquitination plays a crucial role in regulating signal pathways during the post-translation stage of protein synthesis in response to various environmental stresses. E3 ubiquitin ligase has been discovered to ultimately control various intracellular activities by imparting specificity to proteins to be degraded. This study was conducted to confirm biological and genetic functions of the U-box type E3 ubiquitin ligase (PUB) gene against biotic stress in rice (Oryza sativa L.). OsPUB9 gene-specific sgRNA were designed and transformants were developed through Agrobacterium-mediated transformation. Deep sequencing using callus was performed to confirm the mutation type of T0 plants, and a total of three steps were performed to select null individuals without T-DNA insertion. In the case of the OsPUB9 gene-edited line, a one bp insertion was generated by gene editing, and it was confirmed that early stop codon and multiple open reading frame (ORF) sites were created by inserting thymine. It is presumed that ubiquitination function also changed according to the change in protein structure of U-box E3 ubiquitin ligase. The OsPUB9 gene-edited null lines were inoculated with bacterial leaf blight, and finally confirmed to have a resistance phenotype similar to Jinbaek, a bacterial blight-resistant cultivar. Therefore, it is assumed that the amino acid sequence derived from the OsPUB9 gene is greatly changed, resulting in a loss of the original protein functions related to biological mechanisms. Comprehensively, it was confirmed that resistance to bacterial leaf blight stress was enhanced when a mutation occurred at a specific site of the OsPUB9 gene.


Subject(s)
CRISPR-Cas Systems , Disease Resistance , Gene Editing , Oryza , Plant Diseases , Plant Proteins , Ubiquitin-Protein Ligases , Oryza/genetics , Oryza/microbiology , Gene Editing/methods , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
2.
Nat Commun ; 15(1): 5924, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009607

ABSTRACT

The genetic contribution of protein-coding variants to immune-mediated diseases (IMDs) remains underexplored. Through whole exome sequencing of 40 IMDs in 350,770 UK Biobank participants, we identified 162 unique genes in 35 IMDs, among which 124 were novel genes. Several genes, including FLG which is associated with atopic dermatitis and asthma, showed converging evidence from both rare and common variants. 91 genes exerted significant effects on longitudinal outcomes (interquartile range of Hazard Ratio: 1.12-5.89). Mendelian randomization identified five causal genes, of which four were approved drug targets (CDSN, DDR1, LTA, and IL18BP). Proteomic analysis indicated that mutations associated with specific IMDs might also affect protein expression in other IMDs. For example, DXO (celiac disease-related gene) and PSMB9 (alopecia areata-related gene) could modulate CDSN (autoimmune hypothyroidism-, psoriasis-, asthma-, and Graves' disease-related gene) expression. Identified genes predominantly impact immune and biochemical processes, and can be clustered into pathways of immune-related, urate metabolism, and antigen processing. Our findings identified protein-coding variants which are the key to IMDs pathogenesis and provided new insights into tailored innovative therapies.


Subject(s)
Exome Sequencing , Filaggrin Proteins , Humans , Male , Female , Adult , Genetic Predisposition to Disease/genetics , Middle Aged , Immune System Diseases/genetics , Mendelian Randomization Analysis , Mutation , Proteomics , Genetic Variation , Asthma/genetics , Asthma/immunology , Aged , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology
3.
Huan Jing Ke Xue ; 45(7): 4164-4176, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022963

ABSTRACT

Studying the response relationship and spatial distribution characteristics of carbon reserve and land use change and predicting the change trend of carbon reserve caused by the change of land use type in the future can provide some reference for watershed policy formulation, land use structure adjustment, and the realization of the "two-carbon" goal. Based on the land use data from 2000, 2010, and 2020, the InVEST model was used to calculate carbon reserves and analyze the change characteristics and to simulate the land use change and its impact on carbon reserves in natural development, urban development, and ecological protection in 2030 with the help of the PLUS model. The study found that ① the main land types in the Shiyang River Basin from 2000 to 2020 were cultivated land, grassland, and unused land. The area of cultivated land, water area, and construction land in the Shiyang River Basin showed a significant increasing trend, and the construction land area increased the most. ② In the natural development scenario of 2030, cultivated land, water area, and construction all increased by 6.15%, 9.56%, and 29.9%, respectively. In the urban development scenario, the area of construction land increased the most. Compared with that in the other two scenarios, the area of forest land and grassland increased in the ecological protection scenarios. ③ The carbon reserves of the Shiyang River Basin from 2000 to 2020 showed a steady increase, with an overall increase of 0.035×108 t. The increased carbon reserves were mainly due to the increase in cultivated land area. ④ In 2030, the carbon reserves of the Shiyang River Basin showed an increasing trend in all three scenarios. The carbon reserves in the three scenarios were 5.65×108, 5.64×108,and 5.73×108 t, respectively, with the largest increase in carbon reserves in the ecological conservation scenario, mainly due to the increase in grassland and woodland. The results showed that the expansion of construction land was the main cause of the loss of carbon reserves. If effective ecological protection measures are taken, the carbon reserves in the Shiyang River Basin will be improved, and the problem of the loss of carbon reserves caused by economic development can be solved.

4.
Alzheimers Dement ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023044

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS: We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS: In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION: The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS: Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.

5.
Int J Womens Health ; 16: 1173-1186, 2024.
Article in English | MEDLINE | ID: mdl-38952793

ABSTRACT

Purpose: This study aimed to develop the Health Belief Model scale for premature birth prevention (HBM-PBP) and evaluated its psychometric properties in women of childbearing age. Methods: This study employed a cross-sectional design and included 724 women of childbearing age with intentions of future childbirth or in their first trimester of pregnancy. An item pool was formulated from the literature and in-depth interviews based on the health belief model. Content validation was conducted by experts and through cognitive interviews with women of childbearing age. Construct and concurrent validity and reliability were evaluated using factor analysis, Pearson's correlation analysis, and Cronbach's alpha. Results: The HBM-PBP consisted of 96 items, including perceived susceptibility (21 items, 5 subscales), severity (26 items, 5 subscales), benefits (27 items, 5 subscales), and barriers (22 items, 5 subscales). Convergent and discriminant validity were supported. The Cronbach's alpha coefficient of the domains ranged from 0.87 to 0.94. Conclusion: The HBM-PBP is a valid and reliable measurement scale with good psychometric properties. It can be used to measure health beliefs in women, either as a whole or in individual domains. Health professionals can leverage the HBM-PBP to discern women's health beliefs on premature birth, facilitating tailored interventions and educational efforts.

6.
Vet Med Sci ; 10(4): e1521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952271

ABSTRACT

BACKGROUND: Cynomolgus monkeys (Macaca fascicularis) are essential in biomedical research, including reproductive studies. However, the application of human estimated foetal weight (EFW) formulas using ultrasonography (USG) in these non-human primates is not well established. OBJECTIVES: This study aims to evaluate the applicability of human EFW formulas for estimating foetal weight in cynomolgus monkeys at approximately 130 days of gestation. METHODS: Our study involved nine pregnant cynomolgus monkeys. We measured foetal parameters, including biparietal diameter, head circumference, abdominal circumference and femur length using USG. The EFW was calculated using 11 human EFW formulas. The actual birthweight (ABW) was recorded following Cesarean section, the day after the EFW calculation. For comparing EFW and ABW, we employed statistical methods such as mean absolute percentage error (APE) and Bland-Altman analysis. RESULTS: The ABW ranged between 200.36 and 291.33 g. Among the 11 formulas, the Combs formula showed the lowest APE (4.3%) and highest correlation with ABW (p < 0.001). Notably, EFW and ABW differences for the Combs formula were ≤5% in 66.7% and ≤10% in 100% of cases. The Bland-Altman analysis supported these results, showing that all cases fell within the limits of agreement. CONCLUSIONS: The Combs formula is applicable for estimating the weight of cynomolgus monkey fetuses with USG at approximately 130 days of gestation. Our observations suggest that the Combs formula can be applied in the prenatal care and biomedical research of this species.


Subject(s)
Birth Weight , Fetal Weight , Macaca fascicularis , Ultrasonography, Prenatal , Animals , Macaca fascicularis/embryology , Macaca fascicularis/physiology , Female , Fetal Weight/physiology , Pregnancy , Ultrasonography, Prenatal/veterinary , Humans
7.
Angew Chem Int Ed Engl ; : e202408603, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980976

ABSTRACT

Pd(II)-catalyzed enantioselective C-H activation has emerged as a versatile platform for constructing point, axial, and planar chirality. Herein, we present an unexpected discovery of a Pd-catalyzed enantioselective cascade ß,γ-methylene C(sp3)-H diarylation of free carboxylic acids using bidentate chiral mono-protected amino thioether ligands (MPAThio), enabling one-step synthesis of a complex chiral 9,10-dihydrophenanthrenes scaffolds with high enantioselectivity. In this process, two methylene C(sp3)-H bonds and three C(sp2)-H bonds were activated, leading to the formation of four C-C bonds and two chiral centers in one pot. A plausible catalytic pathway starts with enantioselective ß,γ-dehydrogenation to form chiral ß,γ-cyclohexene. Intriguingly, this olefin serves as a norbornene-type reagent (presumably assisted by the carboxyl directing effect), relaying two successive Catellani arylation reactions and a C-H alkylation reaction to furnish chiral 9,10-dihydrophenanthrenes along with meta-selective homocoupling products of iodoarene.

8.
Anal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981066

ABSTRACT

Activatable probes with a higher signal-to-background ratio and accuracy are essential for monitoring liver cancer as well as intraoperative fluorescence navigation. However, the presence of only one biomarker is usually not sufficient to meet the high requirement of a signal-to-background ratio in cancer surveillance, leading to the risk of misdiagnosis. In this work, a dual-locked activation response probe, Si-NTR-LAP, for nitroreductase and leucine aminopeptidase was reported. This dual-locked probe provides better tumor recognition and a higher signal-to-noise ratio than that of single-locked probes (Si-LAP and Si-NTR). In both the subcutaneous tumor model and the more complex orthotopic hepatocellular carcinoma model, the probe was able to identify tumor tissue with high specificity and accurately differentiate the boundaries between tumor tissue and normal tissue. Therefore, the dual-locked probe may provide a new and practical strategy for applying to real patient tumor tissue samples.

9.
Adv Sci (Weinh) ; : e2400586, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984490

ABSTRACT

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.

10.
Mol Neurobiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985257

ABSTRACT

Perioperative neurocognitive dysfunction is a significant concern for population health, impacting postoperative recovery and increasing the financial burden on patients. With an increasing number of surgical procedures being performed, the prevention and management of perioperative neurocognitive dysfunction have garnered significant attention. While factors such as age, lifestyle, genetics, and education are known to influence the development of cognitive dysfunction, recent research has highlighted the role of the gut microbiota in neurological health. An increased abundance of pro-inflammatory gut microbiota can trigger and worsen neuroinflammation, neuronal cell damage, and impaired cellular autophagy. Moreover, the inflammation-promoting gut microbiota can disrupt immune function, impair neuroautophagy, and affect the production and circulation of extracellular vesicles and neurotransmitters. These factors collectively play a role in the onset and advancement of cognitive impairment. This narrative review delves into the molecular mechanisms through which gut microbiota and their derivatives contribute to cognitive impairment, focusing on the impact of anesthesia surgery, changes in gut microbial populations, and perioperative cognitive impairment associations. The study suggests that alterations in the abundance of various bacterial species and their metabolites pre- and post-surgery may be linked to postoperative cognitive impairment. Furthermore, the potential of probiotics or prebiotics in addressing cognitive impairment is discussed, offering a promising avenue for investigating the treatment of perioperative neurocognitive disorders.

11.
Nat Hum Behav ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987357

ABSTRACT

Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.

12.
J Hum Genet ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987656

ABSTRACT

The clinical diagnosis of patients with multisystem involvement including a pronounced neurologic damage is challenging. High-throughput sequencing methods remains crucial to provide an accurate diagnosis. In this study, we reported a Tunisian patient manifesting hypotonia and global developmental delay with visual and skin abnormalities. Exome sequencing was conducted followed by segregation analysis and, subsequently additional investigations. In silico analysis of non-synonymous variants (nsSNPs) described in COG5 in conserved positions was made. Results revealed a homozygous missense variant c.298 C > T (p.Leu100Phe) in the COG5 inherited from both parents. This variant altered both protein solubility and stability, in addition to a putative disruption of the COG5-COG7 interaction. This disruption has been confirmed using patient-derived cells in vitro in a COG5 co-immuno-precipitation, where interaction with binding partner COG7 was abrogated. Hence, we established the COG5-CDG diagnosis. Clinically, the patient shared common features with the already described cases with the report of the ichtyosis as a new manifestation. Conversely, the CADD scoring revealed 19 putatively pathogenic nsSNPs (Minor Allele Frequency MAF < 0.001, CADD > 30), 11 of which had a significant impact on the solubility and/or stability of COG5. These properties seem to be disrupted by six of the seven missense COG5-CDG variants. In conclusion, our study expands the genetic and phenotypic spectrum of COG5-CDG disease and highlight the utility of the next generation sequencing as a powerful tool in accurate diagnosis. Our results shed light on a likely molecular mechanism underlying the pathogenic effect of missense COG5 variants, which is the alteration of COG5 stability and solubility.

13.
J Affect Disord ; 362: 323-333, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971194

ABSTRACT

BACKGROUND: Shift work is associated with susceptibility to several neuropsychiatric disorders. This study aims to investigate the effect of shift work on the incidence of neuropsychiatric disorders, and highlighting how individual variability may influence the association. METHODS: UK Biobank participants with employment information were included. Cox survival was conducted in main and subgroup analyses. Correlation analyses explored the impact of shift work on brain structures, and mediation analyses were performed to elucidate the shared underlying mechanisms. Shift work tolerance was evaluated through survival analyses contrasting the risks associated with five neuropsychiatric disorders in shift versus non-shift workers across different demographic or occupational strata. RESULTS: The analysis encompassed 254,646 participants. Shift work was associated with higher risk of dementia (HR 1.29, 95 % CI 1.10-1.52), anxiety (1.08, 1.01-1.15), depression (1.29, 1.22-1.36), and sleep disorders (1.18, 1.09-1.28), but not stroke (p = 0.20). Shift work was correlated with decreasing volume of various brain regions, particularly in thalamus, lateral orbitofrontal, and middle temporal. Mediation analysis revealed that increased immune response and glucose levels are common pathways linking shift work to these disorders. We observed diversity in shift work tolerance across different individual characteristics, among which socioeconomic status and length of working hours were the most essential. LIMITATIONS: Self-reported employment information may cause misclassification and recall bias. And since we focused on the middle-aged population, the conclusions may not be representative of younger or older populations. CONCLUSIONS: Our findings indicated the need to monitor shift worker health and provide personalized management to help adapt to shift work.

14.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000606

ABSTRACT

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Subject(s)
Dexamethasone , Gastrointestinal Microbiome , Mice, Inbred C57BL , Muscle, Skeletal , Muscular Atrophy , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/chemically induced , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Gastrointestinal Microbiome/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Muscle Proteins/metabolism , Muscle Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Probiotics/administration & dosage , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Lactobacillus plantarum
15.
Nat Commun ; 15(1): 5860, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997268

ABSTRACT

Lithium batteries with solid-state electrolytes are an appealing alternative to state-of-the-art non-aqueous lithium-ion batteries with liquid electrolytes because of safety and energy aspects. However, engineering development at the cell level for lithium batteries with solid-state electrolytes is limited. Here, to advance this aspect and produce high-energy lithium cells, we introduce a cell design based on advanced parametrization of microstructural and architectural parameters of electrode and electrolyte components. To validate the cell design proposed, we assemble and test (applying a stack pressure of 3.74 MPa at 45 °C) 10-layer and 4-layer solid-state lithium pouch cells with a solid polymer electrolyte, resulting in an initial specific energy of 280 Wh kg-1 (corresponding to an energy density of 600 Wh L-1) and 310 Wh kg-1 (corresponding to an energy density of 650 Wh L-1) respectively.

16.
Pest Manag Sci ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017029

ABSTRACT

BACKGROUND: Controlling the spread of arboviral diseases remains a considerable challenge due to the rapid development of insecticide resistance in Aedes mosquitoes. This study evaluated the effects of boric acid-containing toxic sugar bait (TSB) on field populations of resistant Aedes aegypti mosquitoes. In addition, this study examined the flight activity and wing beat frequency and amplitude of males and the flight activity, fecundity, and insemination of females after pairing with males exposed to TSB. The population dynamics of Aedes mosquitoes under imbalanced sex ratios were examined to simulate realistic field conditions for male suppression under the effect of TSB. RESULTS: The mortality of male mosquitoes was consistently high within 24 h after exposure. By contrast, the mortality of female mosquitoes was inconsistent, with over 70% mortality observed at 168 h. The flight activity and wing beat amplitude of treated males were significantly lower than those of controls, but no significant difference in wing beat frequency was detected. The fecundity and insemination of treated female mosquitoes were lower than those of controls. A simulation study indicated that considerably low male population densities led to mating failures, triggering a mate-finding Allee effect and resulting in persistently low population levels. CONCLUSION: Boric acid-containing TSB could effectively complement current chemical intervention approaches to control resistant mosquito populations. TSB is effective in reducing field male populations and impairing male flight activity and female-seeking behavior, resulting in decreased fecundity and insemination. Male suppression due to TSB potentially results in a small mosquito population. © 2024 Society of Chemical Industry.

17.
ACS Nano ; 18(28): 18635-18649, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38950148

ABSTRACT

Prevailing over the bottleneck of von Neumann computing has been significant attention due to the inevitableness of proceeding through enormous data volumes in current digital technologies. Inspired by the human brain's operational principle, the artificial synapse of neuromorphic computing has been explored as an emerging solution. Especially, the optoelectronic synapse is of growing interest as vision is an essential source of information in which dealing with optical stimuli is vital. Herein, flexible optoelectronic synaptic devices composed of centimeter-scale tellurium dioxide (TeO2) films detecting and exhibiting synaptic characteristics to broadband wavelengths are presented. The TeO2-based flexible devices demonstrate a comprehensive set of emulating basic optoelectronic synaptic characteristics; i.e., excitatory postsynaptic current (EPSC), paired-pulse facilitation (PPF), conversion of short-term to long-term memory, and learning/forgetting. Furthermore, they feature linear and symmetric conductance synaptic weight updates at various wavelengths, which are applicable to broadband neuromorphic computations. Based on this large set of synaptic attributes, a variety of applications such as logistic functions or deep learning and image recognition as well as learning simulations are demonstrated. This work proposes a significant milestone of wafer-scale metal oxide semiconductor-based artificial synapses solely utilizing their optoelectronic features and mechanical flexibility, which is attractive toward scaled-up neuromorphic architectures.

18.
Nat Commun ; 15(1): 5540, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956042

ABSTRACT

Iron plays a fundamental role in multiple brain disorders. However, the genetic underpinnings of brain iron and its implications for these disorders are still lacking. Here, we conduct an exome-wide association analysis of brain iron, measured by quantitative susceptibility mapping technique, across 26 brain regions among 26,789 UK Biobank participants. We find 36 genes linked to brain iron, with 29 not being previously reported, and 16 of them can be replicated in an independent dataset with 3,039 subjects. Many of these genes are involved in iron transport and homeostasis, such as FTH1 and MLX. Several genes, while not previously connected to brain iron, are associated with iron-related brain disorders like Parkinson's (STAB1, KCNA10), Alzheimer's (SHANK1), and depression (GFAP). Mendelian randomization analysis reveals six causal relationships from regional brain iron to brain disorders, such as from the hippocampus to depression and from the substantia nigra to Parkinson's. These insights advance our understanding of the genetic architecture of brain iron and offer potential therapeutic targets for brain disorders.


Subject(s)
Brain , Exome Sequencing , Iron , Humans , Iron/metabolism , Brain/metabolism , Male , Female , Mendelian Randomization Analysis , Genome-Wide Association Study , Parkinson Disease/genetics , Parkinson Disease/metabolism , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adult , Alzheimer Disease/genetics , Alzheimer Disease/metabolism
19.
Food Sci Anim Resour ; 44(4): 951-965, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974720

ABSTRACT

Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed ß-galactosidase activity but did not produce harmful ß-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.

20.
Nat Commun ; 15(1): 5777, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982111

ABSTRACT

Alcohol consumption is a heritable behavior seriously endangers human health. However, genetic studies on alcohol consumption primarily focuses on common variants, while insights from rare coding variants are lacking. Here we leverage whole exome sequencing data across 304,119 white British individuals from UK Biobank to identify protein-coding variants associated with alcohol consumption. Twenty-five variants are associated with alcohol consumption through single variant analysis and thirteen genes through gene-based analysis, ten of which have not been reported previously. Notably, the two unreported alcohol consumption-related genes GIGYF1 and ANKRD12 show enrichment in brain function-related pathways including glial cell differentiation and are strongly expressed in the cerebellum. Phenome-wide association analyses reveal that alcohol consumption-related genes are associated with brain white matter integrity and risk of digestive and neuropsychiatric diseases. In summary, this study enhances the comprehension of the genetic architecture of alcohol consumption and implies biological mechanisms underlying alcohol-related adverse outcomes.


Subject(s)
Alcohol Drinking , Exome Sequencing , Humans , Alcohol Drinking/genetics , Male , Female , Genetic Predisposition to Disease , United Kingdom/epidemiology , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Exome/genetics , Middle Aged , Brain/metabolism , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...