Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-250258

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the current pandemic, coronavirus disease 2019 (COVID-19), has taken a huge toll on human lives and the global economy. Therefore, effective treatments against this disease are urgently needed. Here, we established a fluorescence resonance energy transfer (FRET)-based high-throughput screening platform to screen compound libraries to identify drugs targeting the SARS-CoV-2 main protease (Mpro), in particular those which are FDA-approved, to be used immediately to treat patients with COVID-19. Mpro has been shown to be one of the most important drug targets among SARS-related coronaviruses as impairment of Mpro blocks processing of viral polyproteins which halts viral replication in host cells. Our findings indicate that the anti-malarial drug tafenoquine (TFQ) induces significant conformational change in SARS-CoV-2 Mpro and diminishes its protease activity. Specifically, TFQ reduces the -helical content of Mpro, which converts it into an inactive form. Moreover, TFQ greatly inhibits SARS-CoV-2 infection in cell culture system. Hence, the current study provides a mechanistic insight into the mode of action of TFQ against SARS-CoV-2 Mpro. Moreover, the low clinical toxicity of TFQ and its strong antiviral activity against SARS-CoV-2 should warrant further testing in clinical trials.

2.
J Infect Dis ; 213(11): 1800-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26768253

ABSTRACT

The increasing incidence of Klebsiella pneumoniae infections refractory to treatment with current broad-spectrum antibiotic classes warrants the exploration of alternative approaches, such as antibody therapy and/or vaccines, for prevention and treatment. However, the lack of validated targets shared by spectrums of clinical strains poses a significant challenge. We adopted a target-agnostic approach to identify protective antibodies against K. pneumoniae Several monoclonal antibodies were isolated from phage display and hybridoma platforms by functional screening for opsonophagocytic killing activity. We further identified their common target antigen to be MrkA, a major protein in the type III fimbriae complex, and showed that these serotype-independent anti-MrkA antibodies reduced biofilm formation in vitro and conferred protection in multiple murine pneumonia models. Importantly, mice immunized with purified MrkA proteins also showed reduced bacterial burden following K. pneumoniae challenge. Taken together, these results support MrkA as a promising target for K. pneumoniae antibody therapeutics and vaccines.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Fimbriae Proteins/immunology , Klebsiella pneumoniae/immunology , Animals , Antibody Specificity , Bacterial Vaccines/immunology , Biofilms , Cytotoxicity, Immunologic , Humans , Hybridomas , Klebsiella Infections/prevention & control , Mice , Mice, Inbred C57BL , Peptide Library , Phagocytosis , Respiratory Mucosa/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...