Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Clin Interv Aging ; 19: 1067-1078, 2024.
Article in English | MEDLINE | ID: mdl-38911674

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a neurological complication associated with surgery and anesthesia that is commonly observed in older patients, and it can significantly affect patient prognosis and survival. Therefore, predicting and preventing POCD is important. Regional cerebral oxygen saturation (rSO2) reflects cerebral perfusion and oxygenation, and decreased intraoperative cerebral oxygen saturation has been reported to increase the risk of POCD. In this review, we elucidated the important relationship between the decline in rSO2 and risk of POCD in older patients. We also emphasized the importance of monitoring rSO2 during surgery to predict and prevent adverse perioperative cognitive outcomes. The findings reveal that incorporating intraoperative rSO2 monitoring into clinical practice has potential benefits, such as protecting cognitive function, reducing perioperative adverse outcomes, and ultimately improving the overall quality of life of older adults.


Subject(s)
Cerebrovascular Circulation , Postoperative Cognitive Complications , Humans , Postoperative Cognitive Complications/etiology , Aged , Oxygen Saturation , Brain/metabolism , Quality of Life , Oxygen/metabolism , Oxygen/blood , Cognitive Dysfunction/etiology
2.
Neuromodulation ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852085

ABSTRACT

OBJECTIVES: Anesthetic agents used during deep brain stimulation (DBS) surgery might interfere with microelectrode recording (MER) and local field potential (LFP) and thus affect the accuracy of surgical target localization. This review aimed to identify the effects of different anesthetic agents on neuronal activity of the subthalamic nucleus (STN) during the MER procedure. MATERIALS AND METHODS: We used Medical Subject Heading terms to search the PubMed, EMBASE, EBSCO, and ScienceDirect data bases. MER characteristics were sorted into quantitative and qualitative data types. Quantitative data included the burst index, pause index, firing rate (FR), and interspike interval. Qualitative data included background activity, burst discharge (BD), and anesthetic agent effect. We also categorized the reviewed manuscripts into those describing local anesthesia with sedation (LAWS) and those describing general anesthesia (GA) and compiled the effects of anesthetic agents on MER and LFP characteristics. RESULTS: In total, 26 studies on MER were identified, of which 12 used LAWS and 14 used GA. Three studies on LFP also were identified. We found that the FR was preserved under LAWS but tended to be lower under GA, and BD was reduced in both groups. Individually, propofol enhanced BD but was better used for sedation, or the dosage should be minimized in GA. Similarly, low-dose dexmedetomidine sedation did not disturb MER. Opioids could be used as adjunctive anesthetic agents. Volatile anesthesia had the least adverse effect on MER under GA, with minimal alveolar concentration at 0.5. Dexmedetomidine anesthesia did not affect LFP, whereas propofol interfered with the power of LFP. CONCLUSIONS: The effects of the tested anesthetics on the STN in MER and LFP of Parkinson's disease varied; however, identifying the STN and achieving a good clinical outcome are possible under controlled anesthetic conditions. For patient comfort, anesthesia should be considered in STN-DBS.

3.
Article in English | MEDLINE | ID: mdl-38889034

ABSTRACT

Learning signed distance functions (SDFs) from point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy observations. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. To accelerate training, we use multi-resolution hash encodings implemented in CUDA in our framework, which reduces our training time by a factor of ten, achieving convergence within one minute. We further introduce a novel schema to improve multi-view reconstruction by estimating SDFs as a prior. Our evaluations under widely-used benchmarks demonstrate our superiority over the state-of-the-art methods in surface reconstruction from point clouds or multi-view images, point cloud denoising and upsampling.

4.
Int J Antimicrob Agents ; 64(2): 107230, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824973

ABSTRACT

BACKGROUND: Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS: Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS: It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION: These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.

5.
ACS Appl Mater Interfaces ; 16(23): 30147-30156, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38822780

ABSTRACT

The pretreatment of the Cu(In,Ga)Se2 (CIGS) absorption layer using an alkali element can effectively improve the photoelectric conversion efficiency (PCE) of CIGS solar cells. Here, we propose using NaF layer pretreatment below the CIGS absorption layer deposited by a three-stage process. Sodium ions in NaF can effectively suppress the diffusion of Ga elements and form a steep gradient backscatter layer on the back of the CIGS absorption layer, thereby passivating solar cell defects, inhibiting carrier recombination, promoting carrier transmission and collection, improving open circuit voltage (VOC), short circuit current (Jsc), and filling factor (FF), and further improving the PCE.

6.
PLoS Pathog ; 20(5): e1012279, 2024 May.
Article in English | MEDLINE | ID: mdl-38814988

ABSTRACT

The influenza A virus (IAV) consists of 8 single-stranded, negative-sense viral RNA (vRNA) segments. After infection, vRNA is transcribed, replicated, and wrapped by viral nucleoprotein (NP) to form viral ribonucleoprotein (vRNP). The transcription, replication, and nuclear export of the viral genome are regulated by the IAV protein, NS2, which is translated from spliced mRNA transcribed from viral NS vRNA. This splicing is inefficient, explaining why NS2 is present in low abundance after IAV infection. The levels of NS2 and its subsequent accumulation are thought to influence viral RNA replication and vRNP nuclear export. Here we show that NS2 is ubiquitinated at the K64 and K88 residues by K48-linked and K63-linked polyubiquitin (polyUb) chains, leading to the degradation of NS2 by the proteasome. Additionally, we show that a host deubiquitinase, OTUB1, can remove polyUb chains conjugated to NS2, thereby stabilizing NS2. Accordingly, knock down of OTUB1 by siRNA reduces the nuclear export of vRNP, and reduces the overall production of IAV. These results collectively demonstrate that the levels of NS2 in IAV-infected cells are regulated by a ubiquitination-deubiquitination system involving OTUB1 that is necessary for optimal IAV replication.


Subject(s)
Cysteine Endopeptidases , Influenza A virus , Viral Nonstructural Proteins , Virus Replication , Animals , Dogs , Humans , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Deubiquitinating Enzymes/metabolism , HEK293 Cells , Influenza A virus/metabolism , Influenza, Human/metabolism , Influenza, Human/virology , RNA, Viral/metabolism , RNA, Viral/genetics , Ubiquitination , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication/physiology , Cell Line , Vero Cells , Chlorocebus aethiops
7.
J Hazard Mater ; 473: 134713, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788570

ABSTRACT

Energy consumption structure has been adjusted worldwide as a measure to reduce CO2 emission and mitigate air pollution. The "Coal to Gas" transition in mainland China has successfully controlled air pollution in recent decades, but its impacts on the environment beyond air quality improvement remain unknown. With 210Pb dating, this study chronicled profiles of eight anthropogenic metal(loid)s in sediment core from 14 waterscape parks across the Ring Road Network of Beijing, China. Six sediment cores were dated showing a timing coupling of metal(loid) loadings with annual coal consumption during the increasing period before 2000. Two downwind sediment cores in downtown Beijing presented such couplings in both increasing and descending periods for coal consumption before and after 2000, respectively, close to the tipping point observed in 2002 for primary energy consumption efficiency. Evidence from stable Pb isotope composition and exceedances of Cu loadings against sediment quality guidelines of China and the USA suggest that vehicular sources have been dominating metal(loid) loadings in sedimentation in these waterscape parks after the "Coal to Gas" transition. These findings would be helpful in identifying environmental impact patterns resulting from shifts in energy consumption structure and dominance of emission sources thereafter.

8.
Abdom Radiol (NY) ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755454

ABSTRACT

PURPOSE: To assess the value of orthogonal axial images (OAI) of MRI in gastric cancer T staging. METHODS: This retrospective study enrolled 133 patients (median age, 63 [range, 24-85] years) with gastric adenocarcinoma who underwent both CT and MRI followed by surgery. MRI lacking or incorporating OAI and CT images were evaluated, respectively. Diagnostic performance (accuracy, sensitivity, and specificity) for each T stage, overall diagnostic accuracy and rates of over- and understaging were quantified employing pathological T stage as a reference standard. The McNemar's test was performed to compare the overall accuracy. RESULTS: Among patients with pT1-pT4 disease, MRI with OAI (accuracy: 88.7-94.7%, sensitivity: 66.7-93.0%, specificity: 91.5-100.0%) exhibited superior diagnostic performance compared to MRI without OAI (accuracy: 81.2-88.7%, sensitivity: 46.2-83.1%, specificity: 85.5-99.1%) and CT (accuracy: 88.0-92.5%, sensitivity: 53.3-90.1%, specificity: 88.7-98.1%). The overall accuracy of MRI with OAI was significantly higher (83.5%) than that of MRI without OAI (67.7%) (p < .001). However, there was no significant difference in the overall accuracy of MRI with OAI and CT (78.9%) (p = .35). The over- and understaging rates of MRI with OAI (12.0, 4.5%) were lower than those of MRI without OAI (21.8, 10.5%) and CT (12.8, 8.3%). CONCLUSION: OAI play a pivotal role in the T staging of gastric cancer. MRI incorporating OAI demonstrated commendable performance for gastric cancer T-staging, with a slight tendency toward its superiority over CT.

9.
Quant Imaging Med Surg ; 14(5): 3264-3274, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720830

ABSTRACT

Background: Diffusion-derived vessel density (DDVD) is a physiological surrogate of the area of micro-vessels per unit tissue area. DDVD is calculated according to: DDVD(b0b5) = Sb0/ROIarea0 - Sb5/ROIarea5, where Sb0 and Sb5 refer to the tissue signal when b is 0 or 5 s/mm2. This study applied DDVD to assess the perfusion of rectal carcinoma (RC). Methods: MRI was performed with a 3.0-T magnet. Diffusion weighted image with b-values of 0, 5 s/mm2 were acquired in 113 patients with non-mucinous RC and 15 patients with mucinous RC. Diffusion-derived vessel density ratio [DDVDr(b0b5)] was DDVD(b0b5) of RC divided by DDVD(b0b5) of tumor-free rectal wall. Results: The median value of the DDVDr(b0b5) for non-mucinous RCs was 1.430, with the majority of RCs showing a higher DDVD than the adjacent tumor-free wall [i.e., with DDVDr(b0b5) >1]. 90.3% (102/113) of non-mucinous RCs were hypervascular, 1.77% (2/113) were iso-vascular, and 7.96% (9/113) were hypovascular. The median value of the DDVDr(b0b5) for mucinous RCs was 1.660. 73.3% (11/15) of mucinous RCs were hypervascular, and 26.7% (4/15) were hypovascular. A trend (P=0.09) was noted that earlier clinical grades non-mucinous RCs had a higher DDVDr(b0b5) than those of the advanced clinical grades (2.245 for grade 0&I, 1.460 for grade II, 1.430 for grade III, 1.130 for grade IV). A non-significant trend was noted with well and moderately differentiated non-mucinous RCs had a higher DDVDr(b0b5)than that of poorly differentiated non-mucinous RCs (median: 1.460 vs. 1.320). A non-significant trend was noted with MRI-detected extramural vascular invasion (mrEMVI) positive non-mucinous RCs had a higher DDVDr(b0b5) than that of mrEMVI negative non-mucinous RCs (1.630 vs. 1.370). Conclusions: DDVD results in this study approximately agree with contrast agent dynamically enhanced CT literature data.

10.
Natl Sci Rev ; 11(5): nwae085, 2024 May.
Article in English | MEDLINE | ID: mdl-38577670

ABSTRACT

Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.

11.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38651806

ABSTRACT

The rates of many electrocatalytic reactions can be strongly affected by the structure and dynamics of the electrochemical double layer, which in turn can be tuned by the concentration and identity of the supporting electrolyte's cation. The effect of cations on an electrocatalytic process depends on a complex interplay between electrolyte components, electrode material and surface structure, applied electrode potential, and reaction intermediates. Although cation effects remain insufficiently understood, the principal mechanisms underlying cation-dependent reactivity and selectivity are beginning to emerge. In this Perspective, we summarize and critically examine recent advances in this area in the context of the hydrogen evolution reaction (HER) and CO2-to-CO conversion, which are among the most intensively studied and promising electrocatalytic reactions for the sustainable production of commodity chemicals and fuels. Improving the kinetics of the HER in base and enabling energetically efficient and selective CO2 reduction at low pH are key challenges in electrocatalysis. The physical insights from the recent literature illustrate how cation effects can be utilized to help achieve these goals and to steer other electrocatalytic processes of technological relevance.

12.
Article in English | MEDLINE | ID: mdl-38648138

ABSTRACT

Surface reconstruction for point clouds is an important task in 3D computer vision. Most of the latest methods resolve this problem by learning signed distance functions from point clouds, which are limited to reconstructing closed surfaces. Some other methods tried to represent open surfaces using unsigned distance functions (UDF) which are learned from ground truth distances. However, the learned UDF is hard to provide smooth distance fields due to the discontinuous character of point clouds. In this paper, we propose CAP-UDF, a novel method to learn consistency-aware UDF from raw point clouds. We achieve this by learning to move queries onto the surface with a field consistency constraint, where we also enable to progressively estimate a more accurate surface. Specifically, we train a neural network to gradually infer the relationship between queries and the approximated surface by searching for the moving target of queries in a dynamic way. Meanwhile, we introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF. We conduct comprehensive experiments in surface reconstruction for point clouds, real scans or depth maps, and further explore our performance in unsupervised point normal estimation, which demonstrate non-trivial improvements of CAP-UDF over the state-of-the-art methods.

13.
Schizophrenia (Heidelb) ; 10(1): 41, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580688

ABSTRACT

The aim of this study is to compare ecologically-valid measure (the Cambridge Prospective Memory Test, CAMPROMPT) and laboratory measure (eye-tracking paradigm) in assessing prospective memory (PM) in individuals with schizophrenia spectrum disorders (SSDs). In addition, eye-tracking indices are used to examine the relationship between PM and other cognitive domains in SSDs patients. Initially, the study sample was formed by 32 SSDs patients and 32 healthy control subjects (HCs) who were matched in sociodemographic profile and the performance on CAMPROMPT. An eye-tracking paradigm was employed to examine the differences in PM accuracy and key cognitive processes (e.g., cue monitoring) between the two groups. Additional 31 patients were then recruited to investigate the relationship between PM cue monitoring, other cognitive functions, and the severity of clinical symptoms within the SSDs group. The monitoring of PM cue was reflected in total fixation time and total fixation counts for distractor words. Cognitive functions were assessed using the Chinese version of the MATRICS Consensus Cognitive Battery (MCCB). The Positive and Negative Syndrome Scale (PANSS) was applied to assess psychopathology. SSDs patients exhibited fewer total fixation counts for distractor words and lower PM accuracy compared to HCs, even though they were priori matched on CAMPROMPT. Correlation analysis within the SSDs group (63 cases) indicated a negative correlation between PM accuracy and PANSS total score, and a positive correlation with working memory and attention/vigilance. Regression analysis within the SSDs group revealed that higher visual learning and lower PANSS total scores independently predicted more total fixation counts on distractor words. Impairment in cue monitoring is a critical factor in the PM deficits in SSDs. The eye-tracking laboratory paradigm has advantages over the ecologically-valid measurement in identifying the failure of cue detection, making it a more sensitive tool for PM deficits in patients with SSDs.

14.
J Hazard Mater ; 471: 134381, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663296

ABSTRACT

Surface sediment in urban waterways originates from fine topsoil particles within catchments via surface erosion, often bonded with non-degradable metal(loid)s. This study posited that urban green infrastructures (UGIs) can influence anthropogenic metal(loid) transport from catchment topsoil to waterway sediment by retaining moveable particles. In multiply channeled downtown Suzhou, China, UGIs' spatial patterns were examined in relations to metal(loid)s source (catchment topsoil) - sink (waterway surface sediment) dynamics. Anthropogenic metal(loid)s - As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn - were spatially quantified in sediment at 144 waterway points and in topsoil at 154 UGIs' points across 7 subwatersheds. Integrated metal(loid) loads revealed significantly higher sediment loads (except for As) than topsoil, varying with element specificity and spatial unmatching across the subwatersheds. Loads of metal(loid)s in topsoil showed no significant differences among UGI types, but sediment loads of As, Cr, and Ni correlated positively with topsoil loads in roadside and public facility UGIs within 100 m- and 200 m-wide riparian buffer zones. However, waterfront UGIs negatively impacted on these correlations for Cr, Hg, and Ni loads within the riparian buffer zones. These findings highlight metal(loid) specificity and UGIs' spatial pattern effects on anthropogenic metal(loid) loads between catchment topsoil (source) and waterway surface sediment (sink), offering valuable guidelines for UGIs' design and implementation.

15.
Inorg Chem ; 63(15): 6714-6722, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38557020

ABSTRACT

Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 µmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.

16.
Front Psychiatry ; 15: 1343188, 2024.
Article in English | MEDLINE | ID: mdl-38505800

ABSTRACT

Objective: The aim of this study was to investigate the impact of early life adversity on cognitive function in patients with schizophrenia, with a focus on social cognition (SC). Methods: Two groups of patients with schizophrenia were recruited and matched on sociodemographic and clinical characteristics. One group consisted of 32 patients with a history of childhood trauma (SCZ-ct), and the other group consisted of 30 patients without a history of childhood trauma (SCZ-nct). In addition, 39 healthy controls without a history of childhood trauma (HC-nct) were also recruited. The intelligence of the three groups was assessed using the Wechsler Abbreviated Scale of Intelligence (WAIS-RC) short version. The cognitive function evaluation was conducted using the MATRICS Consensus Cognitive Battery (MCCB), and early life adversity was measured using the Childhood Trauma Questionnaire-Short Form (CTQ) and Bullying Scale for Adults (BSA). Results: Patients with schizophrenia endosed significantly higher scores on the CTQ (F=67.61, p<0.001) and BSA (F=9.84, p<0.001) compared to the HC-nct. Analysis of covariance (ANCOVA) and post-hoc analyses revealed that SCZ-ct (F=11.20, p<0.001) exhibited the most pronounced cognitive impairment among the three groups, as indicated in MCCB total scores and in the domain score of SC. CTQ exhibited a negative correlation with MCCB (r=-0.405, p< 0.001); SC was negatively correlated with physical abuse (PA) of CTQ (r=-0.271, p=0.030) and emotional abuse (EA) of BSA (r=-0.265, p=0.034) in the whole patient sample. Higher SC performance was significantly predicted by CT_total (Beta =-0.582, p<0.001, 95% CI -0.96-0.46), and years of education (Beta=0.260, p =0.014, 95% CI 0.20-1.75) in schizophrenia. Conclusions: Besides familial trauma, schizophrenia patients appear to have a higher likelihood of experiencing bullying in their early life. These experiences seem to contribute significantly to their severe impairments in SC.

17.
ACS Omega ; 9(9): 10621-10627, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463298

ABSTRACT

Excessive administration of penicillin G and improper disposal of its residues pose a serious risk to human health; therefore, the development of convenient methods for monitoring penicillin G levels in products is essential. Herein, novel gold-silver nanoclusters (AuAgNCs) were synthesized using chicken egg white and 6-aza-2-thiothymine as dual ligands with strong yellow fluorescence at 509 and 689 nm for the highly selective detection of penicillin G. The AuAgNCs were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectrophotometry, and fluorescence spectrophotometry. Under optimum conditions, the fluorescence intensity decreased linearly with the concentration of penicillin G from 0.2 to 6 µM, with a low detection limit of 18 nM. Real sample analyses indicated that a sensor developed using the AuAgNCs could detect penicillin G in urine and water samples within 10 min, with the recoveries ranging from 99.7 to 104.0%. The particle size of the AuAgNCs increased from 1.80 to 9.06 nm in the presence of penicillin G. We believe the aggregation-induced quenching of the fluorescence of the AuAgNCs was the main mechanism for the detection of penicillin G. These results demonstrate the ability of our sensor for monitoring penicillin G levels in environmental and clinic samples.

18.
Brain Res ; 1830: 148821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401770

ABSTRACT

Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Resveratrol/therapeutic use , Cognitive Dysfunction/drug therapy , Alzheimer Disease/drug therapy , Dementia, Vascular/drug therapy , Brain
19.
Front Bioeng Biotechnol ; 12: 1322008, 2024.
Article in English | MEDLINE | ID: mdl-38384434

ABSTRACT

Different head positions affect the responses of the vestibular semicircular canals (SCCs) to angular movement. Specific head positions can relieve vestibular disorders caused by excessive stimulating SCCs. In this study, we quantitatively explored responses of human SCCs using numerical simulations of fluid-structure interaction and vestibulo-ocular reflex (VOR) experiments under different forward-leaning angles of the head, including 0°, 10°, 20°, 30°, 40°, 50°, and 60°. It was found that the horizontal nystagmus slow-phase velocity and corresponding biomechanical responses of the cupula in horizontal SCC increased with the forward-leaning angles of the head, reached a maximum when the head was tilted 30° forward, and then gradually decreased. However, no obvious vertical or torsional nystagmus was observed in the VOR experiments. In the numerical model of bilateral SCCs, the biomechanical responses of the cupula in the left anterior SCC and the right anterior SCC showed the same trends; they decreased with the forward-leaning angles, reached a minimum at a 40° forward tilt of the head, and then gradually increased. Similarly, the biomechanical responses of the cupula in the left posterior SCC and in the right posterior SCC followed a same trend, decreasing with the forward-leaning angles, reaching a minimum at a 30° forward tilt of the head, and then gradually increasing. Additionally, the biomechanical responses of the cupula in both the anterior and posterior SCCs consistently remained lower than those observed in the horizontal SCCs across all measured head positions. The occurrence of these numerical results was attributed to the consistent maintenance of mutual symmetry in the bilateral SCCs with respect to the mid-sagittal plane containing the axis of rotation. This symmetry affected the distribution of endolymph pressure, resulting in biomechanical responses of the cupula in each pair of symmetrical SCCs exhibiting same tendencies under different forward-leaning angles of the head. These results provided a reliable numerical basis for future research to relieve vestibular diseases induced by spatial orientation of SCCs.

20.
Dalton Trans ; 53(6): 2526-2533, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38226637

ABSTRACT

Excessive emission of CO2 into the atmosphere has severely impacted the global ecological environment. Converting CO2 into valuable chemicals and fuels is of great significance for sustainable development. However, low activity and undesirable selectivity often result from the inherent inertness of CO2. Herein, K- or/and Zn-modified Fe-based catalysts were prepared by an incipient-wetness impregnation method for CO2 hydrogenation via a cascade reaction. The results indicate that K species exist as K2O while Zn species exist as ZnFe2O4. In the CO2 hydrogenation pathway, K2O facilitates the adsorption of CO2 and restrains the adsorption of H2, accelerating the transformation of CO2 into C2-C4 olefins rather than paraffins while Zn species promote the dispersion of Fe species, leading to improved activity. Synergistically, a K- and Zn-modified Fe-based catalyst (2Zn-10K-Fe/Al) shows excellent catalytic CO2 hydrogenation activity, achieving a CO2 conversion of 77% which is 1.8 times that (42%) of the unmodified Fe-based catalyst (Fe/Al). Our catalyst also shows a significantly promoted selectivity to C2-C4 olefins of 17% in comparison with the Fe/Al catalyst (0%). It is envisioned that such a binary effect of elements might contribute to the low-cost and industrial production of Fe-based catalysts for selective CO2 conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...