Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 669
Filter
1.
Microbiome ; 12(1): 121, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970122

ABSTRACT

BACKGROUND: Despite rapid advances in genomic-resolved metagenomics and remarkable explosion of metagenome-assembled genomes (MAGs), the function of uncultivated anaerobic lineages and their interactions in carbon mineralization remain largely uncertain, which has profound implications in biotechnology and biogeochemistry. RESULTS: In this study, we combined long-read sequencing and metatranscriptomics-guided metabolic reconstruction to provide a genome-wide perspective of carbon mineralization flow from polymers to methane in an anaerobic bioreactor. Our results showed that incorporating long reads resulted in a substantial improvement in the quality of metagenomic assemblies, enabling the effective recovery of 132 high-quality genomes meeting stringent criteria of minimum information about a metagenome-assembled genome (MIMAG). In addition, hybrid assembly obtained 51% more prokaryotic genes in comparison to the short-read-only assembly. Metatranscriptomics-guided metabolic reconstruction unveiled the remarkable metabolic flexibility of several novel Bacteroidales-affiliated bacteria and populations from Mesotoga sp. in scavenging amino acids and sugars. In addition to recovering two circular genomes of previously known but fragmented syntrophic bacteria, two newly identified bacteria within Syntrophales were found to be highly engaged in fatty acid oxidation through syntrophic relationships with dominant methanogens Methanoregulaceae bin.74 and Methanothrix sp. bin.206. The activity of bin.206 preferring acetate as substrate exceeded that of bin.74 with increasing loading, reinforcing the substrate determinantal role. CONCLUSION: Overall, our study uncovered some key active anaerobic lineages and their metabolic functions in this complex anaerobic ecosystem, offering a framework for understanding carbon transformations in anaerobic digestion. These findings advance the understanding of metabolic activities and trophic interactions between anaerobic guilds, providing foundational insights into carbon flux within both engineered and natural ecosystems. Video Abstract.


Subject(s)
Carbon , Metagenomics , Methane , Methane/metabolism , Carbon/metabolism , Metagenomics/methods , Bioreactors/microbiology , Metagenome , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Phylogeny , Anaerobiosis , Transcriptome , Genome, Bacterial , Microbiota , Gene Expression Profiling
2.
Chemistry ; : e202401909, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972837

ABSTRACT

Modulating the assembly pathway is an indispensable strategy for optimizing the performance of optical materials. However, implementing this strategy is nontrivial for metal nanocluster building blocks, due to the limited functional modification of nanoclusters and complexity of their emission mechanism. In this report, we demonstrate that a gold nanocluster modified by 4,6-diamino-2-pyrimidinethiol (DPT-AuNCs) self-assembles into two distinct aggregation structures in methanol (MeOH)/water mixed solvent, thus exhibiting pathway complexity. Kinetic studies show that DPT-AuNCs firstly assembles into non-luminescent nanofibers (kinetically controlled), which further transforms into strongly luminescent microflowers (thermodynamicallycontrolled). In-depth analysis of the assembly mechanism reveals that the transformation of aggregation structures involves the disassembly of nanofibers and a subsequent nucleation-growth process. Temperature-dependent photoluminescence (PL) spectroscopy and infrared (IR) measurements reveal that inter-cluster hydrogen bonding bridged by solvent molecules and C-H···π interaction are the key factors for emission enhancement. The photoluminescent property of DPT-AuNCs can be controlled by varying the cosolvent in water, enabling DPT-AuNCs to distinguish different kind of alcohols, particularly the isomerism n-propanol (NPA) and isopropanol (IPA). Additionally, he addition of seeds effectively regulate the assembly kinetics of DPT-AuNCs. This study advances our understanding of assembly pathways and improves the luminescent performance of nanoclusters (NCs).

3.
Metabolomics ; 20(4): 76, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002042

ABSTRACT

BACKGROUND: Aortic dissection (AD) significantly threated human cardiovascular health, extensive clinical-scientific research programs have been executed to uncover the pathogenesis and prevention. Unfortunately, no specific biomarker was identified for the causality or development of human AD. AIM OF REVIEW: Metabolomics, a high-throughput technique capable of quantitatively detecting metabolites, holds considerable promise in discovering specific biomarkers and unraveling the underlying pathways involved. Aiming to provide a metabolite prediction in human AD, we collected the metabolomics data from 2003 to 2023, and diligently scrutinized with the online system MetaboAnalyst 6.0. KEY SCIENTIFIC CONCEPTS OF REVIEW: Based on the data obtained, we have concluded the metabolic dynamics were highly correlated with human AD. Such metabolites (choline, serine and uridine) were frequently involved in the AD. Besides, the pathways, including amino acids metabolism and lipids metabolism, were also dysregulated in the disease. Due to the current limitation of metabolism analysis, the integrative omics data including genomics, transcriptomics, and proteomics were required for developing the specific biomarker for AD.


Subject(s)
Aortic Dissection , Biomarkers , Metabolomics , Humans , Biomarkers/metabolism , Aortic Dissection/metabolism , Aortic Dissection/diagnosis , Metabolomics/methods , Metabolome
4.
Behav Brain Res ; 472: 115139, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969017

ABSTRACT

Numerous studies have demonstrated that chronic stress during pregnancy (CSDP) can induce depression and hippocampal damage in offspring. It has also been observed that high levels of corticotropin-releasing hormone (CRH) can damage hippocampal neurons, and intraperitoneal injection of a corticotropin releasing hormone receptor 1 (CRHR1) antagonist decreases depression-like behavior and hippocampal neuronal damage in a mouse depression model. However, whether CSDP causes hippocampal damage and depression in offspring through the interaction of CRH and hippocampal CRHR1 remains unknown and warrants further investigation. Therefore, hippocampal Crhr1 conditional gene knockout mice and C57/BL6J mice were used to study these questions. Depression-related indexs in male offspring mice were examined using the forced swim test (FST), sucrose preference test (SPT), tail suspension test (TST) and open field test (OFT). Serum CRH levels were measured by enzyme-linked immunosorbent assay (ELISA). Golgi-Cox staining was used to examine the morphological changes of hippocampal neuronal dendrites. Neuronal apoptosis in the hippocampal CA3 regions was detected by terminal deoxynucleotidy transferase dUTP nick end labeling (TUNEL) staining. The levels of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR) and protein kinase B (AKT) proteins were measured by Western blot analysis. This study showed that CSDP induces depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring mice. Conditional gene knockout of hippocampal Crhr1 in mice reduced CSDP-induced depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring, and counteracted the CSDP-induced decreased expression of p-Akt and mTOR activity in male offspring hippocampus. These findings demonstrated that CSDP might inhibit the Akt/mTOR pathway by increasing the levels of CRH, leading to increased CRH-mediated activation of hippocampal CRHR1, thereby inducing synaptic impairment and apoptosis in hippocampal neurons, which in turn leads to depression-like behavior in offspring.

5.
Environ Technol ; : 1-13, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023010

ABSTRACT

Ammonia monohydrate (NH3·H2O) is an important chemical widely used in industrial, agricultural, and pharmaceutical fields. Reject water is used as the raw material in self-built bipolar membrane electrodialysis (BMED) to produce NH3·H2O. The effects of electrode materials, membrane stack structure, and operating conditions (current density, initial concentrations of the reject water, and initial volume ratio) on the BMED process were investigated, and the economic costs were analyzed. The results showed that compared with graphite electrodes, ruthenium-iridium-titanium electrodes as electrode plates for BMED could increase current efficiency (25%) and reduce energy consumption (26%). Compared with two-compartment BMED, three-compartment BMED had a higher ammonia nitrogen conversion rate (86.6%) and lower energy consumption (3.5 kW· h/kg). Higher current density (15 mA/cm2) could achieve better current efficiency (79%). The BMED performances were improved when the initial NH4+ concentrations of the reject water increased from 500 mg NH4+/L to 1000 mg NH4+/L, but the performance decreased as the concentration increased from 1000 mg NH4+/L to 1500 mg NH4+/L. High initial volume ratio of the salt compartment and product compartment was beneficial for reducing energy consumption. Under the optimal operating conditions, only 0.13 $/kg reject water was needed to eliminate the environmental impact of reject water accumulation. This work indicates that BMED can not only achieve desalination of reject water, but also generate products that alleviate the operational pressure of factories.

6.
Appl Environ Microbiol ; : e0056324, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023264

ABSTRACT

We developed a nondestructive three-dimensional microbial visualization method utilizing synchrotron radiation X-ray microscale computed tomography to better understand the relationship between microorganisms and their surrounding habitats. The method was tested and optimized using a mixture of axenic Escherichia coli and Comamonas testosteroni. The osmium-thiocarbohydrazide-osmium method was used to stain all the microbial cells, and gold in situ hybridization was used to detect specific phylogenetic microbial groups. The stained samples were embedded in epoxy resin for microtomographic analysis. Differences in X-ray absorbances were calculated by subtracting the pre-L3-edge images from the post-L3-edge images to visualize the osmium and gold signals. Although we successfully detected cells stained with osmium, those labeled with gold were not detected, probably because of the insufficient density of gold atoms in the microbial cells. We then applied the developed technique to anaerobic granules and visualized the distribution of microbial cells and extracellular polymeric substances. Empty spaces were highlighted to determine the cavity distribution in granules. Numerous independent cavities of different sizes were identified in the granules. The developed method can be applied to various environmental samples for deeper insights into microbial life in their habitats. IMPORTANCE: Microorganisms inhabit diverse environments and often form biofilms. One factor that affects their community structure is the surrounding physical environment. The arrangement of residential space within the formed biofilm plays a crucial role in the supply and transportation of substances, as well as the discharge of metabolites. Conventional approaches, such as scanning electron microscopy and confocal laser scanning microscopy combined with fluorescence in situ hybridization, have limitations as they provide information primarily from the biofilm surface and cross-sections. In this study, we developed a method for detecting microorganisms in biofilms using synchrotron radiation X-ray microscale computer tomography. The developed method allows nondestructive three-dimensional observation of biofilms at a single-cell resolution (voxel size of approximately 200 nm), facilitating an understanding of the relationship between microorganisms and their physical habitats.

7.
Bioresour Technol ; : 131091, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986883

ABSTRACT

The reuse of hydroxyapatite particles (HAPs) as a granulation activator for anammox sludge was explored to address the remaining issues of time-consuming and unstable granular structure in anammox granulation. During the granulation, nitrogen removal capacity from 2.8 to 13.7 gN/L/d was obtained within 193 days, accompanied by an enhancement in bio-activity from 0.23 to 0.52 gN/gVSS/d. HAPs and anammox microorganisms coupled well to aggregate into granules for denser biomass, higher settleability, and stronger mechanical properties, which effectively improved the biomass retention capacity and structural strength of the sludge system. A skeleton structure formed by the HAPs was characterized during the transformation of the granules, playing a crucial role in strengthening the stability of the sludge. The intermediate processes of granulation were thus clarified to propose an evolutionary pathway for anammox-HAP granules. The pre-addition of HAPs is conducive to achieving faster anammox granulation and rapid process start-up for high-strength wastewater treatment.

9.
Bioresour Technol ; 406: 130964, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876279

ABSTRACT

Biomethane recovery from paper waste (PW) was achieved by mesophilic co-digestion with food waste. The feeding material containing 0%, 20%, 40% and 50% of PW in total solids (TS) were investigated in the long-term continuous operation. The results showed that the biogas production, pH, alkalinity and biodegradation of volatile solids (79.8 ± 3.6%) were stable for PW contents no more than 50%. The PW = 50% condition was considered the critical limit for the reasons of pump clogging, sufficient alkalinity (2.0 ± 0.3 g-CaCO3/L) and depletion of ammonia. Prokaryotic diversity indices decreased with the increased PW contents. Great shifts were observed in the prokaryotic communities before and after the PW contents reaches 50% as TS (18.4% as total weights). Biomethane recovery yields were deceasing from 445 to 350 NL-CH4/kg-fed-volatile-solids. The PW contents as 40% as TS (13.1% as total weights) obtained the optimal performance among all the feeding conditions.

10.
ACS Macro Lett ; 13(6): 788-797, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38838345

ABSTRACT

Quantifying adhesion is crucial for understanding adhesion mechanisms and developing advanced dopamine-inspired materials and devices. However, achieving nondestructive and real-time quantitation of adhesion using optical spectra remains challenging. Here, we present a dopamine-inspired orthogonal phenanthrenequinone photochemistry strategy for the one-step adhesion and real-time visual quantitation of fluorescent spectra. This strategy utilizes phenanthrenequinone-mediated photochemistry to facilitate conjoined network formation in the adhesive through simultaneous photoclick cycloaddition and free-radical polymerization. The resulting hydrogel-like adhesive exhibits good mechanical performance, with a Young's modulus of 300 kPa, a toughness of 750 kJ m-3, and a fracture energy of 4500 J m-2. This adhesive, along with polycyclic aromatic phenanthrenequinones, shows strong adhesion (>100 kPa) and interfacial toughness thresholds (250 J m-2) on diverse surfaces─twice to triple as much as typical dopamine-contained adhesives. Importantly, such an adhesive demonstrates excellent fluorescent performance under UV irradiation, closely correlating with its adhesion strengths. Their fluorescence intensities remain constant after continuous stretching/releasing treatment and even in the dried state. Therefore, this dopamine-inspired orthogonal phenanthrenequinone photochemistry is readily available for real-time and nondestructive visual quantitation of adhesion performance under various conditions. Moreover, the adhesive precursor is chemically ultrastable for more than seven months and achieves adhesion on substrates within seconds upon blue light irradiation. As a proof-of-concept, we leverage the rapid and visual quantitation of adhesion and printability to create fluorescent patterns and structures, showcasing applications in information storage, adhesion prediction, and self-reporting properties. This general and straightforward strategy holds promise for rapidly preparing functional adhesive materials and designing high-performance wearable devices.

11.
ACS Macro Lett ; 13(6): 664-672, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38755098

ABSTRACT

Dynamic covalent hydrogels are gaining attention for their potential in smart materials, soft devices, electronics, and more thanks to their impressive mechanical properties, biomimetic structures, and dynamic behavior. However, a significant challenge lies in designing precise and efficient dynamic photochemistry for their preparation, allowing for complex structures and control over the dynamic process. Herein, we propose a general and straightforward orthogonal dynamic covalent photochemistry strategy for preparing high-performance printable dynamic covalent hydrogels, thereby broadening their advanced applications. This photochemical strategy uses a bifunctional photocatalyst to initiate radical polymerization and release ligands through a rapid light-mediated dissociation mechanism. This process leads to a controlled increase in system pH from mildly acidic to alkaline conditions within one hundred seconds, which in turn triggers the pH-sensitive model reactions of boronic acid/diol complexation and Knoevenagel condensation. The orthogonal photochemistry enables the formation of interpenetrated and conjoined networks, significantly enhancing the mechanical properties of the hydrogels. The reversible bonds formed during the process, i.e., boronic ester and unsaturated ketone bonds, confer excellent self-healing, reprocessable, and recyclable properties on the hydrogels through photochemical pH variations. Furthermore, this rapid, controlled fabrication process and dynamic behavior are highly compatible with printing techniques, enabling the design of adaptive and recyclable sensors with different structures. These advancements are promising for various material science, medicine, and engineering applications.

12.
Environ Res ; 255: 119158, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763279

ABSTRACT

The reliable and efficient nitrite production rate (NPR) through nitritation process is the prerequisite for the efficient running of subsequent processes, like the anammox process and the nitrite shunt. However, there has been scant research on stable and productive nitritation process in recent years. In this study, at a stable hydraulic retention time of 12.0 h and with precise and strict DO control, the upper limit of the NPR was initially investigated using a continuous-flow granular sludge reactor. The NPR of 1.69 kg/m3/d with a nitrite production efficiency of 81.97% was finally achieved, which set a record until now in similar research. The median sludge particle size of 270.0 µm confirmed the development of clearly defined granular sludge. The genus Nitrosomonas was the major ammonium oxidizing bacteria. In conclusion, this study provides valuable insights for the practical application of the effective nitritation process driving subsequent nitrogen removal processes.


Subject(s)
Bioreactors , Nitrites , Nitrogen , Sewage , Sewage/microbiology , Nitrites/metabolism , Bioreactors/microbiology , Nitrogen/metabolism , Oxidation-Reduction , Waste Disposal, Fluid/methods , Anaerobiosis , Nitrosomonas/metabolism , Ammonium Compounds/metabolism
13.
Environ Res ; 252(Pt 4): 119137, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38740290

ABSTRACT

Enzymatic pretreatment is an effective method which can improve the anaerobic digestion (AD) efficiency of household food waste (HFW). As an alternative to expensive commercial enzymes, mixed enzymes (MEs) produced in situ from HFW by solid-state fermentation (SSF) can greatly promote the hydrolysis rate of HFW and achieve advanced anaerobic digestion (AAD) economically sustainable. In this paper, strategies for improving the efficiency of the enzyme-production process and the abundance of MEs are briefly discussed, including SSF, fungal co-cultivation, and stepwise fermentation. The feasibility of using HFW as an applicable substrate for producing MEs (amylase, protease, and lignocellulose-degrading enzymes) and its potential advantages in HFW anaerobic digestion are comprehensively illustrated. Based on the findings, an integrated AAD process of HFW pretreated with MEs produced in situ was proposed to maximise bioenergy recovery. The mass balance results showed that the total volatile solids removal rate could reach 98.56%. Moreover, the net energy output could reach 2168.62 MJ/t HFW, which is 9.79% higher than that without in situ-produced MEs and pretreatment. Finally, perspectives for further study are presented.


Subject(s)
Fermentation , Anaerobiosis , Refuse Disposal/methods , Feasibility Studies , Hydrolysis , Food Loss and Waste
14.
J Relig Health ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739255

ABSTRACT

Previous studies on the relationship between temporal sense and negative mental health symptoms have focused primarily on healthy college students, overlooking the role of religion. This study sought to examine the impact of religion on college students with sensory impairment and fill a gap in the research on the relationship between temporal sense and negative mental health symptoms in this population. The results were obtained from a cross sectional survey of 540 participants, including 370 hearing-impaired students and 140 visually impaired students. The survey investigated the mediating effect of religion on the relationship between temporal sense and negative mental health symptoms in impaired students. The rates of negative mental health symptoms (depression, anxiety, and stress) detected were 18.9%, 31.1%, and 2.9%, respectively. Students with different types of sensory impairments showed significant differences in their perception of time. The percentages of students with sensory impairments who attended church and practiced religion were 2.0%, 6.0%, and 1.0%, respectively. The results revealed a significant positive correlation between temporal sense and negative mental health symptoms, with religion serving as a mediating factor.

15.
Bioresour Technol ; 402: 130772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703959

ABSTRACT

To explore the enzyme-enhanced strategy of a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic codigestion system of food waste and corn straw was first operated stably, and then the best combination of compound enzymes (laccase, endo-ß-1,4-glucanase, xylanase) was determined via a series of batch trials. The results showed that the methane yield (186.8 ± 19.9 mL/g VS) with enzyme addition was 12.2 % higher than that without enzyme addition. Furthermore, the removal rates of cellulose, hemicellulose and lignin increased by 31 %, 36 % and 78 %, respectively. In addition, dynamic membranes can form faster and more stably with enzyme addition. The addition of enzymes changed the structure of microbial communities while maintaining sufficient hydrolysis bacteria (Bacteroidetes), promoting the proliferation of Proteobacteria as a dominant strain and bringing stronger acetylation ability. In summary, the compound enzyme strengthening strategy successfully improved the methane production, dynamic membrane effect, and degradation rate of lignocellulose in AnDMBR.


Subject(s)
Bioreactors , Lignin , Membranes, Artificial , Methane , Lignin/metabolism , Anaerobiosis , Methane/metabolism , Hydrolysis , Zea mays/chemistry , Enzymes/metabolism , Bacteria/metabolism
16.
Environ Sci Technol ; 58(21): 9350-9360, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743617

ABSTRACT

The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.


Subject(s)
Bioreactors , Iron , Wastewater , Wastewater/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Sewage/chemistry , Biological Oxygen Demand Analysis , Methane , Biofuels , Phosphorus , Membranes, Artificial
17.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38589298

ABSTRACT

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

18.
Bioresour Technol ; 401: 130710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636880

ABSTRACT

The integration of high-rate activated sludge (HRAS), an effective carbon redirection technology, with partial nitritation/anammox (PN/A) is a novel AB treatment process for municipal wastewater. In this study, an airlift HRAS reactor was operated in the continuous inflow mode for 200 d at a wastewater treatment plant. The balance between potential PN/A system stability and peak HRAS performance under decreasing hydraulic retention time (HRT) was optimized. Energy consumption and recovery and CO2 emissions were calculated. The results showed that the optimal HRT suitable with the PN/A process was 3 h, achieving 2-3 g/L mixed liquor volatile suspended solid, 67.8 % chemical oxygen demand (COD) recovery, 81 % total COD removal efficiency, 2.27 ± 1.03 g COD/L/d organic loading rate, 62 % aeration reduction, and 0.24 kWh/m3 power recovery potential. Such findings hold practical value and contribute to the development of the optimal AB process capable of achieving energy autonomy and carbon neutrality.


Subject(s)
Bioreactors , Sewage , Water Purification , Water Purification/methods , Wastewater/chemistry , Biological Oxygen Demand Analysis , Waste Disposal, Fluid/methods , Time Factors , Nitrogen , Carbon Dioxide , Oxidation-Reduction , Cities
19.
Front Pharmacol ; 15: 1309178, 2024.
Article in English | MEDLINE | ID: mdl-38650631

ABSTRACT

Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.

20.
Sci Rep ; 14(1): 8339, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594294

ABSTRACT

Choroideremia (CHM) is an X-linked retinal degeneration leading to loss of the photoreceptors, retinal pigment epithelium (RPE), and choroid. Adaptive optics optoretinography is an emerging technique for noninvasive, objective assessment of photoreceptor function. Here, we investigate parafoveal cone function in CHM using adaptive optics optoretinography and compare with cone structure and clinical assessments of vision. Parafoveal cone mosaics of 10 CHM and four normal-sighted participants were imaged with an adaptive optics scanning light ophthalmoscope. While acquiring video sequences, a 2 s 550Δ10 nm, 450 nW/deg2 stimulus was presented. Videos were registered and the intensity of each cone in each frame was extracted, normalized, standardized, and aggregated to generate the population optoretinogram (ORG) over time. A gamma-pdf was fit to the ORG and the peak was extracted as ORG amplitude. CHM ORG amplitudes were compared to normal and were correlated with bound cone density, ellipsoid zone to RPE/Bruch's membrane (EZ-to-RPE/BrM) distance, and foveal sensitivity using Pearson correlation analysis. ORG amplitude was significantly reduced in CHM compared to normal (0.22 ± 0.15 vs. 1.34 ± 0.31). In addition, CHM ORG amplitude was positively correlated with cone density, EZ-to-RPE/BrM distance, and foveal sensitivity. Our results demonstrate promise for using ORG as a biomarker of photoreceptor function.


Subject(s)
Choroideremia , Humans , Ophthalmoscopy/methods , Retinal Cone Photoreceptor Cells , Choroid , Retinal Pigment Epithelium/diagnostic imaging , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...