Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 26(18): 185702, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25872454

ABSTRACT

One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-355560

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of the ultra-filtration extract mixture from Hedysarum Polybotrys (UEMHP) on the radiosensitivity of HepG2 cells, and to explore its possible mechanisms.</p><p><b>METHODS</b>The proliferation inhibition effects of UEMHP on HepG2 cells was detected by CCK-8 assay. The colony formation assay was used for the survival fraction (SF) analysis. The distribution of the cell cycle and the apoptosis rate were detected using flow cytometry (FCM). The survivin mRNA expression level was detected using reverse transcription-PCR assay.</p><p><b>RESULTS</b>The inhibition of UEMHP on HepG2 cells was time-and dose-dependent at the concentration ranging between 5 -50 mg/L (P < 0.05). The parameters of the two curve for SF (P < 0.05) showed statistical difference between the irradiation group and the UEMHP irradiation group. UEMHP could inhibit the clone formation of HepG2 cells and enhance the radiosensitivity of HepG2 cells. The results of FCM showed that UEMHP could induce G2/M phase arrest. The apoptosis rate in the UEMHP irradiation group (21.42% +/- 3.74%) was higher than that in the control group (5.35% +/- 0.41%), the only UEMHP group (10.36% +/- 1.75%), or the irradiation group (10.58% +/- 2.01%) (P < 0.01). RT-PCR showed that the survivin mRNA expression level was lower in the UEMHP irradiation group (0.31 +/- 0.02) than in the control group (0.82 +/- 0.06) and the irradiation group (0.58 +/- 0.04) respectively, showing statistical difference (P < 0.01).</p><p><b>CONCLUSION</b>UEMHP can enhance the radiosensitivity of HepG2 cells, and its possible mechanisms might be correlated to down-regulating the survivin mRNA expression and promoting the apoptosis.</p>


Subject(s)
Humans , Apoptosis , Cell Proliferation , Radiation Effects , Drugs, Chinese Herbal , Pharmacology , Hep G2 Cells , Inhibitor of Apoptosis Proteins , Metabolism , Radiation Tolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...