Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34279322

ABSTRACT

Nitrogen-doped graphene (NG) was synthesized through the chemical vapor deposition (CVD) of graphene on Cu substrates, which were pre-implanted with N ions by the ion implantation method. The pre-implanted N ions in the Cu substrate could dope graphene by the substitution of C atoms during the CVD growth of graphene, forming NG. Based on this, NG's long-term protection properties for Cu were evaluated by ambient exposure for a corrosion test. The results showed that NG can obviously reduce the natural oxidation of Cu in the long-term exposure compared with the case of pristine graphene (PG) coated on Cu. Moreover, with the increase in pre-implanted N dose, the formed NG's long-term protection for Cu improved. This indicates that the modification of graphene by N doping is an effective way to improve the corrosion resistance of the PG coating owing to the reduction in its conductivity, which would inhibit galvanic corrosion by cutting off electron transport across the interface in their long-term protection. These findings provide insight into corrosion mechanisms of the graphene coating and correlate with its conductive nature based on heteroatoms doping, which is a potential route for improving the corrosion resistance of graphene as an effective barrier coating for metals.

2.
Nanotechnology ; 31(48): 485603, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-32936786

ABSTRACT

The barrier properties of graphene coating are highly correlated with its microstructure which is then determined by the chemical vapor deposition (CVD) growth history on metals. We demonstrate here an unrevealed selective area oxidation of copper under graphene, which is derived from the implicit-etching-controlled CVD growth mode of graphene. By charactering and analyzing the selective area patterns of Cu oxidation, an etched pattern trace with nano/microvoids during graphene growth has been proposed to account for this. Based on such selective oxidation of Cu, distributed galvanic corrosion will be triggered and proceed locally at the interface of graphene-Cu system to coalescence together under a continuous corrosion environment, eventually presenting a homogeneous oxidation of Cu and gradual decoupling of graphene-Cu system. This discovery will assist our understanding of the barrier properties of two-dimensional materials and can be extended to other applications related to quality monitoring of grown materials and defects-based chemical modifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...