Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Circulation ; 146(21): 1591-1609, 2022 11 22.
Article in English | MEDLINE | ID: mdl-35880522

ABSTRACT

BACKGROUND: Metabolic disorder increases the risk of abdominal aortic aneurysm (AAA). NRs (nuclear receptors) have been increasingly recognized as important regulators of cell metabolism. However, the role of NRs in AAA development remains largely unknown. METHODS: We analyzed the expression profile of the NR superfamily in AAA tissues and identified NR1D1 (NR subfamily 1 group D member 1) as the most highly upregulated NR in AAA tissues. To examine the role of NR1D1 in AAA formation, we used vascular smooth muscle cell (VSMC)-specific, endothelial cell-specific, and myeloid cell-specific conditional Nr1d1 knockout mice in both AngII (angiotensin II)- and CaPO4-induced AAA models. RESULTS: Nr1d1 gene expression exhibited the highest fold change among all 49 NRs in AAA tissues, and NR1D1 protein was upregulated in both human and murine VSMCs from AAA tissues. The knockout of Nr1d1 in VSMCs but not endothelial cells and myeloid cells inhibited AAA formation in both AngII- and CaPO4-induced AAA models. Mechanistic studies identified ACO2 (aconitase-2), a key enzyme of the mitochondrial tricarboxylic acid cycle, as a direct target trans-repressed by NR1D1 that mediated the regulatory effects of NR1D1 on mitochondrial metabolism. NR1D1 deficiency restored the ACO2 dysregulation and mitochondrial dysfunction at the early stage of AngII infusion before AAA formation. Supplementation with αKG (α-ketoglutarate, a downstream metabolite of ACO2) was beneficial in preventing and treating AAA in mice in a manner that required NR1D1 in VSMCs. CONCLUSIONS: Our data define a previously unrecognized role of nuclear receptor NR1D1 in AAA pathogenesis and an undescribed NR1D1-ACO2 axis involved in regulating mitochondrial metabolism in VSMCs. It is important that our findings suggest αKG supplementation as an effective therapeutic approach for AAA treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Mice , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Aorta, Abdominal/pathology , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Muscle, Smooth, Vascular/metabolism , Citric Acid Cycle , Myocytes, Smooth Muscle/metabolism , Angiotensin II/adverse effects , Mice, Knockout , Aconitate Hydratase/metabolism , Disease Models, Animal , Mice, Inbred C57BL
2.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(8): 642-6, 2013 Aug.
Article in Chinese | MEDLINE | ID: mdl-24225234

ABSTRACT

OBJECTIVE: To investigate the effect of farnesoid-X-receptor (FXR) antagonist Z-guggulsterone in an in vivo high-fat fed apolipoprotein E knockout (ApoE(-/-)) mice model of myocardial ischemia/reperfusion (I/R). METHODS: Male ApoE(-/-) mice were randomly divided into three groups: standard ApoE(-/-) group (fed with standard mouse diet for 12 weeks before myocardial I/R procedure, n = 18), high-fat ApoE(-/-) group (fed with high-fat mouse diet for 12 weeks before myocardial I/R procedure, n = 22), and high-fat ApoE(-/-) + FXR antagonist group(fed with high-fat mouse diet for 12 weeks and received FXR antagonist Z-Guggulsterone 30 minutes before myocardial I/R procedure, n = 17). The expression of FXR was detected by real-time quantitative-PCR. Myocardial infarct size was determined by Evans blue/TTC double staining methods. Myocardial apoptosis was determined by in situ TUNEL technique. Markers of the mitochondrial-mediated apoptotic pathway (cytochrome c release, caspase-9 activity, and BAX and BCL-2 levels), endoplasmic reticulum stress apoptotic pathway (caspase-12 activity and CHOP level), and death receptor apoptotic pathway (caspase-8 activity, and Fas and FasL levels) were also measured. RESULT: FXR expression (3.7-fold higher, P < 0.01), myocardial infarct size [(62.1 ± 7.0)% vs. (33.8 ± 5.8)%, P < 0.01] and myocardial apoptosis index[ (36.8 ± 5.7)% vs. (17.2 ± 3.8)%, P < 0.01]were all significantly higher in high-fat ApoE(-/-) group than those in standard ApoE(-/-) group. Compared with high-fat ApoE(-/-) group, myocardial infarct size [(24.4 ± 4.7)% vs. (62.1 ± 7.0)%, P < 0.01] and myocardial apoptosis index [(13.8 ± 2.7)% vs. (36.8 ± 5.7)%, P < 0.01] were significantly reduced in high-fat ApoE(-/-) + FXR antagonist group. Moreover, levels of mitochondrial-mediated apoptotic pathway markers (cytochrome c release, caspase-9 activity, and BAX/BCL-2 levels) and endoplasmic reticulum stress apoptotic pathway markers (caspase-12 activity and CHOP level) were significantly lower in high-fat ApoE(-/-) + FXR antagonist group than those in high-fat ApoE(-/-) group (all P < 0.01). Levels of death receptor apoptotic pathway markers (caspase-8 activity, and Fas and FasL levels) were similar between high-fat ApoE(-/-) group and high-fat ApoE(-/-) + FXR antagonist group. CONCLUSION: FXR antagonist alleviates myocardial reperfusion injury in cholesterol-fed ApoE(-/-) mice via inhibition of the mitochondrial-mediated and endoplasmic-reticulum stress pathway.


Subject(s)
Apolipoproteins E/genetics , Myocardial Reperfusion Injury/prevention & control , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Animals , Apoptosis/drug effects , Caspase 9/metabolism , Cholesterol, Dietary/administration & dosage , Cytochromes c/metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress , Male , Mice , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Pregnenediones/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...