Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Transl Med ; 9(388)2017 05 03.
Article in English | MEDLINE | ID: mdl-28469033

ABSTRACT

Prevention of respiratory syncytial virus (RSV) illness in all infants is a major public health priority. However, no vaccine is currently available to protect this vulnerable population. Palivizumab, the only approved agent for RSV prophylaxis, is limited to high-risk infants, and the cost associated with the requirement for dosing throughout the RSV season makes its use impractical for all infants. We describe the development of a monoclonal antibody as potential RSV prophylaxis for all infants with a single intramuscular dose. MEDI8897*, a highly potent human antibody, was optimized from antibody D25, which targets the prefusion conformation of the RSV fusion (F) protein. Crystallographic analysis of Fab in complex with RSV F from subtypes A and B reveals that MEDI8897* binds a highly conserved epitope. MEDI8897* neutralizes a diverse panel of RSV A and B strains with >50-fold higher activity than palivizumab. At similar serum concentrations, prophylactic administration of MEDI8897* was ninefold more potent than palivizumab at reducing pulmonary viral loads by >3 logs in cotton rats infected with either RSV A or B subtypes. MEDI8897 was generated by the introduction of triple amino acid substitutions (YTE) into the Fc domain of MEDI8897*, which led to more than threefold increased half-life in cynomolgus monkeys compared to non-YTE antibody. Considering the pharmacokinetics of palivizumab in infants, which necessitates five monthly doses for protection during an RSV season, the high potency and extended half-life of MEDI8897 support its development as a cost-effective option to protect all infants from RSV disease with once-per-RSV-season dosing in the clinic.


Subject(s)
Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Viruses/pathogenicity , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Female , Humans , Infant , Infant, Newborn , Male , Palivizumab/pharmacokinetics , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects
3.
Cell ; 166(3): 596-608, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27453466

ABSTRACT

Influenza virus remains a threat because of its ability to evade vaccine-induced immune responses due to antigenic drift. Here, we describe the isolation, evolution, and structure of a broad-spectrum human monoclonal antibody (mAb), MEDI8852, effectively reacting with all influenza A hemagglutinin (HA) subtypes. MEDI8852 uses the heavy-chain VH6-1 gene and has higher potency and breadth when compared to other anti-stem antibodies. MEDI8852 is effective in mice and ferrets with a therapeutic window superior to that of oseltamivir. Crystallographic analysis of Fab alone or in complex with H5 or H7 HA proteins reveals that MEDI8852 binds through a coordinated movement of CDRs to a highly conserved epitope encompassing a hydrophobic groove in the fusion domain and a large portion of the fusion peptide, distinguishing it from other structurally characterized cross-reactive antibodies. The unprecedented breadth and potency of neutralization by MEDI8852 support its development as immunotherapy for influenza virus-infected humans.


Subject(s)
Alphainfluenzavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Antibody Specificity , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Binding Sites, Antibody , Crystallography, X-Ray , Epitopes/immunology , Ferrets , Humans , Influenza Vaccines , Mice , Orthomyxoviridae Infections/prevention & control , Protein Conformation
4.
Cancer Cell ; 29(1): 117-29, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26766593

ABSTRACT

Antibody-drug conjugate (ADC) which delivers cytotoxic drugs specifically into targeted cells through internalization and lysosomal trafficking has emerged as an effective cancer therapy. We show that a bivalent biparatopic antibody targeting two non-overlapping epitopes on HER2 can induce HER2 receptor clustering, which in turn promotes robust internalization, lysosomal trafficking, and degradation. When conjugated with a tubulysin-based microtubule inhibitor, the biparatopic ADC demonstrates superior anti-tumor activity over ado-trastuzumab emtansine (T-DM1) in tumor models representing various patient subpopulations, including T-DM1 eligible, T-DM1 ineligible, and T-DM1 relapsed/refractory. Our findings indicate that this biparatopic ADC has promising potential as an effective therapy for metastatic breast cancer and a broader patient population may benefit from this unique HER2-targeting ADC.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Immunotoxins/therapeutic use , Maytansine/analogs & derivatives , Receptor, ErbB-2/immunology , Trastuzumab/therapeutic use , Ado-Trastuzumab Emtansine , Animals , Breast Neoplasms/immunology , Female , Humans , Maytansine/therapeutic use , Mice , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...