Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(26): e2300626, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929671

ABSTRACT

It is a challenge to develop adhesives simultaneously capable of strong adhesion and efficient switchable ability. Herein, the authors report multifunctional switchable adhesives named Cu2+ -curcumin-imidazole-polyurethane (CIPUs:Cu2+ ) by introducing 1-(3-aminopropyl) imidazole and curcumin into polyurethane system crossed by Cu2+ forming dynamic metal-ligand bonds. This CIPUs:Cu2+ has strong adhesion (up to 2.46 MPa) on various material surfaces due to their specially designed functional groups alike the secretions from mussels. It can achieve fast switching speed (30 s) and high switch efficiency through multiple contactless remote stimulations. Importantly, density functional theory (DFT) calculation reveals that such metal-ligand bonds consisting of two components: stronger Cu2+ -curcumin complexes and weaker Cu2+ -imidazole complexes can aggregate to form multi-level dynamic stable structure . The special structure can not only be acted as sacrificial sites for easily broken and reformed, allowing efficient switchable adhesion and enormous energy dissipation but also acted as firm sites to maintain the cohesion of the adhesive and the reversible reconstruction network. Intriguingly, the CIPUs:Cu2+ can achieve self-healing at room temperature without needing external stimuli. Overall, this strategy can further broaden the design of switchable adhesives in the fields of intelligent gadgets, wearable bio-monitoring devices, etc.

2.
ACS Appl Mater Interfaces ; 14(25): 29213-29222, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35714067

ABSTRACT

To alleviate the predicament of resource shortage and environmental pollution, efficiently using abundant solar energy is a great challenge. Herein, we prepared unique photothermal conversion phase-change materials, namely, CNT@PCMs, by introducing carbon nanotubes (CNTs) used as photothermal conversion materials into the recyclable matrix of phase-change materials (PCMs). These devised CNT@PCMs cleverly combine the photothermal conversion capability of CNTs and the thermal energy storage capability of traditional PCMs. Especially, the surface temperature of the prepared CNT@PCMs can be raised to 100 °C within 165 s under the solar simulator (150 mW cm-2), showing a surprising heating rate that is much higher than that of the reported works and achieving a higher photothermal conversion efficiency for solar energy in this work. Furthermore, these CNT@PCMs can hold high melting latent heat with a maximum value at 110.0 J g-1, exhibiting remarkable thermal storage ability aside from preeminent photothermal conversion capability. Intriguingly, the introduction of dynamic oxime group-carbamate bonds into the molecular structure can endow CNT@PCMs with an outstanding self-healing performance and recyclability. The broken CNT@PCMs sample can be healed in 2 min under IR-laser irradiation. Importantly, the phase-change and mechanical properties and photothermal conversion efficiency of CNT@PCMs can also remain virtually unchanged after multiple recycles. It is of great significance to design this style of CNT@PCMs for achieving the efficient utilization of solar energy and environmental protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...