Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Res Sq ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798599

ABSTRACT

Both overt and indolent inflammatory insults in heart transplantation can accelerate pathologic cardiac remodeling, but there are few tools for monitoring the speed and severity of remodeling over time. To address this need, we developed an automated computational pathology system to measure pathologic remodeling in transplant biopsy samples in a large, retrospective cohort of n=2167 digitized heart transplant biopsy slides. Biopsy images were analyzed to identify the pathologic stromal changes associated with future allograft loss or advanced allograft vasculopathy. Biopsy images were then analyzed to assess which historical allo-inflammatory events drive progression of these pathologic stromal changes over time in serial biopsy samples. The top-5 features of pathologic stromal remodeling most strongly associated with adverse outcomes were also strongly associated with histories of both overt and indolent inflammatory events. Our findings identify previously unappreciated subgroups of higher- and lower-risk transplant patients, and highlight the translational potential of digital pathology analysis.

2.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660245

ABSTRACT

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

3.
Int J Biol Macromol ; 267(Pt 1): 131492, 2024 May.
Article in English | MEDLINE | ID: mdl-38604418

ABSTRACT

Human heavy chain ferritin (HFn) protein cage has been explored as a nanocarrier for targeted anticancer drug delivery. Here, we introduced a matrix metalloproteinases (MMPs)-cleavable sequence into the DE loop of HFn, creating an MMP-responsive variant, MR-HFn, for localized and extracellular drug release. The crystal structure of MR-HFn revealed that the addition of the MMPs recognition sequence did not affect the self-assembly of HFn but presented a surface-exposed loop susceptible to MMPs cleavage. Biochemical analysis indicated that this engineered protein cage is responsive to MMPs, enabling the targeted release of encapsulated drugs. To evaluate the therapeutic potential of this engineered protein cage, monosubstituted ß-carboxy phthalocyanine zinc (CPZ), a type of photosensitizer, was loaded inside this protein cage. The prepared CPZ@MR-HFn showed higher uptake and stronger phototoxicity in MMPs overexpressed tumor cells, as well as enhanced penetration into multicellular tumor spheroids compared with its counterpart CPZ@HFn in vitro. In vivo, CPZ@MR-HFn displayed a higher tumor inhibitory rate than CPZ@HFn under illumination. These results indicated that MR-HFn is a promising nanocarrier for anticancer drug delivery and the MMP-responsive strategy here can also be adapted for other stimuli.


Subject(s)
Antineoplastic Agents , Drug Liberation , Matrix Metalloproteinases , Protein Engineering , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Matrix Metalloproteinases/metabolism , Animals , Cell Line, Tumor , Mice , Ferritins/chemistry , Ferritins/metabolism , Indoles/chemistry , Indoles/pharmacology , Drug Carriers/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
4.
Cardiovasc Res ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546342

ABSTRACT

AIMS: Alteplase is a cornerstone thrombolytic agent in clinical practice, but presents a potential bleeding risk. Stroke patients need pre-screening to exclude hemorrhagic stroke before using Alteplase. In this study, we develop a new thrombolytic agent citPA5, characterized by an enhanced safety profile and minimal bleeding tendency. METHODS AND RESULTS: A clot lysis agent, named citPA5, is developed based on rtPA with point mutations to completely suppress its proteolytic activity in the absence of fibrin. In the presence of fibrin, citPA5 exhibited significantly higher fibrinolytic activity (a 15.8-fold increase of kcat/Km). Furthermore, citPA5 showed resistance to endogenous fibrinolysis inhibitor, PAI-1, resulting in enhanced potency. In a series of safety evaluation experiments, including thrombelastography (TEG) assay, mice tail bleeding assay, and a murine intracerebral hemorrhage (ICH) model, citPA5 did not cause systemic bleeding or worsen intracerebral hemorrhage compared to Alteplase. This highlights the low risk of bleeding associated with citPA5. Finally, we found that citPA5 effectively improved cerebral blood flow and reduced infarct volume in a carotid embolism-induced stroke (CES) model. CONCLUSIONS: This clot lysis agent, citPA5, not only exhibits a low risk of bleeding but also demonstrates highly effective thrombolysis capabilities. As a result, citPA5 shows great potential for administration prior to the classification of stroke types, making it possible for use in ambulances at the onset of stroke when symptoms are identified. The findings presented in this study also suggest that this strategy could be applied to develop a new generation of fibrinolytic drugs that offer greater safety and specificity in targeting fibrin.

5.
Circ Heart Fail ; 17(2): e010950, 2024 02.
Article in English | MEDLINE | ID: mdl-38348670

ABSTRACT

BACKGROUND: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes. METHODS: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event. RESULTS: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades. CONCLUSIONS: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.


Subject(s)
Heart Failure , Heart Transplantation , Humans , Myocardium/pathology , Heart Transplantation/adverse effects , Heart Failure/pathology , Heart , Allografts , Graft Rejection/diagnosis , Biopsy
6.
Int J Biol Macromol ; 257(Pt 2): 128618, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070813

ABSTRACT

Administration of recombinant tPA (rtPA, or trade name Alteplase®) is an FDA-approved therapy for acute ischemic stroke (AIS), but poses the risk of hemorrhagic complications. Recombinant tPA can be rapidly inactivated by the endogenous inhibitor, plasminogen activator inhibitor 1 (PAI-1). In this work, we study a novel treatment approach that combines a PAI-1 inhibitor, PAItrap4, with a reduced dose of rtPA to address the hemorrhagic concern of rtPA. PAItrap4 is a highly specific and very potent protein-based inhibitor of PAI-1, comprising of a variant of uPA serine protease domain, human serum albumin, and a cyclic RGD peptide. PAItrap4 efficiently targets and inhibits PAI-1 on activated platelets, and also possesses a long half-life in vivo. Our results demonstrate that PAItrap4 effectively counteracts the inhibitory effects of PAI-1 on rtPA, preserving rtPA activity based on amidolytic and clot lysis assays. In an in vivo murine stroke model, PAItrap4, together with low-dose rtPA, enhances the blood perfusion in the stroke-affected areas, reduces infarct size, and promotes neurological recovery in mice. Importantly, such treatment does not increase the amount of cerebral hemorrhage, thus reducing the risk of cerebral hemorrhage. In addition, PAItrap4 does not compromise the normal blood coagulation function in mice, demonstrating its safety as a therapeutic agent. These findings highlight this combination therapy as a promising alternative for the treatment of ischemic stroke, offering improved safety and efficacy.


Subject(s)
Ischemic Stroke , Stroke , Humans , Mice , Animals , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , Plasminogen Activator Inhibitor 1 , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Stroke/drug therapy , Stroke/complications , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use
7.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111151

ABSTRACT

Cancer remains one of the most pressing challenges to global healthcare, exerting a significant impact on patient life expectancy. Cancer metastasis is a critical determinant of the lethality and treatment resistance of cancer. The urokinase-type plasminogen activator receptor (uPAR) shows great potential as a target for anticancer and antimetastatic therapies. In this work, we aimed to identify potential uPAR inhibitors by structural dynamics-based virtual screenings against a natural product library on four representative apo-uPAR structural models recently derived from long-timescale molecular dynamics (MD) simulations. Fifteen potential inhibitors (NP1-NP15) were initially identified through molecular docking, consensus scoring, and visual inspection. Subsequently, we employed MD-based molecular mechanics-generalized Born surface area (MM-GBSA) calculations to evaluate their binding affinities to uPAR. Structural dynamics analyses further indicated that all of the top 6 compounds exhibited stable binding to uPAR and interacted with the critical residues in the binding interface between uPAR and its endogenous ligand uPA, suggesting their potential as uPAR inhibitors by interrupting the uPAR-uPA interaction. We finally predicted the ADMET properties of these compounds. The natural products NP5, NP12, and NP14 with better binding affinities to uPAR than the uPAR inhibitors previously discovered by us were proven to be potentially orally active in humans. This work offers potential uPAR inhibitors that may contribute to the development of novel effective anticancer and antimetastatic therapeutics.Communicated by Ramaswamy H. Sarma.

8.
Biomolecules ; 13(11)2023 11 03.
Article in English | MEDLINE | ID: mdl-38002293

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an important and harmful intracellular pathogen that is responsible for the cause of tuberculosis (TB). Mtb capsular polysaccharides can misdirect the host's immune response pathways, resulting in additional challenges in TB treatment. These capsule polysaccharides are biosynthesized by stealth proteins, including CpsY. The structure and functional mechanism of Mtb CpsY are not completely delineated. Here, we reported the crystal structure of CpsY201-520 at 1.64 Å. CpsY201-520 comprises three ß-sheets with five α-helices on one side and three on the other. Four conserved regions (CR1-CR4) are located near and at the base of its catalytic cavity, and three spacer segments (S1-S3) surround the catalytic cavity. Site-directed mutagenesis demonstrated the strict conservation of R419 at CR3 and S1-S3 in regulating the phosphotransferase activity of CpsY201-520. In addition, deletion of S2 or S3 (∆S2 or ∆S3) dramatically increased the activity compared to the wild-type (WT) CpsY201-520. Results from molecular dynamics (MD) simulations showed that S2 and S3 are highly flexible. Our study provides new insights for the development of new vaccines and targeted immunotherapy against Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Tuberculosis/microbiology , Molecular Dynamics Simulation , Polysaccharides
9.
PeerJ ; 11: e16308, 2023.
Article in English | MEDLINE | ID: mdl-38025760

ABSTRACT

Aim: N6-methyladenosine (m6A) RNA methylation exerts a regulatory effect on endometrioid ovarian cancer (EOC), but the specific m6A regulator genes in EOC remain to be explored. This study investigated that sulforaphene (Sul) is implicated in EOC development by regulating methyltransferase-like 3 (METTL3). Methods: The dysregulated m6A RNA methylation genes in EOC were determined by methylated RNA immunoprecipitation (MeRIP-seq) and RNA sequencing. The roles of METTL3 and/or Sul on viability, proliferative ability, cell cycle, and apoptosis of EOC cells were determined by MTT, colony formation, flow cytometry, and TUNEL staining assay, respectively. The expression of METTL3 and apoptosis-related proteins in EOC cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays. Results: Five m6A RNA methylation regulators (METTL3, ELF3, IGF2BP2, FTO, and METTL14) were differentially expressed in EOC, among which METTL3 had the highest expression level. Silencing METTL3 reduced the clonal expansion and viability of EOC cells, and caused the cells to arrest in the G0/G1 phase. This also promoted apoptosis in the EOC cells and activated the FAS/FADD and mitochondrial apoptosis pathways. In contrast, overexpressing METTL3 had the opposite effect. Sul, in a dose-dependent manner, reduced the viability of EOC cells but promoted their apoptosis. Sul also increased the levels of IGF2BP2 and FAS, while decreasing the levels of KRT8 and METTL3. Furthermore, Sul was able to reverse the effects of METTL3 overexpression on EOC cells. Conclusions: Sul could suppress cell proliferation and promote apoptosis of EOC cells by inhibiting the METTL3 to activate the FAS/FADD and apoptosis-associated pathways.


Subject(s)
Carcinoma, Endometrioid , Ovarian Neoplasms , Female , Humans , Cell Proliferation/genetics , Apoptosis/genetics , Carcinoma, Endometrioid/genetics , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/genetics , RNA , Methyltransferases/genetics , RNA-Binding Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
10.
J Hazard Mater ; 460: 132454, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37703742

ABSTRACT

The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.


Subject(s)
COVID-19 , Disinfectants , Animals , Mice , Humans , Anti-Bacterial Agents/toxicity , Quaternary Ammonium Compounds/toxicity , Containment of Biohazards , Pandemics , Indoles/toxicity
11.
Molecules ; 28(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375194

ABSTRACT

Photodynamic therapy (PDT) is recognized as a powerful method to inactivate cells. However, the photosensitizer (PS), a key component of PDT, has suffered from undesired photobleaching. Photobleaching reduces reactive oxygen species (ROS) yields, leading to the compromise of and even the loss of the photodynamic effect of the PS. Therefore, much effort has been devoted to minimizing photobleaching in order to ensure that there is no loss of photodynamic efficacy. Here, we report that a type of PS aggregate showed neither photobleaching nor photodynamic action. Upon direct contact with bacteria, the PS aggregate was found to fall apart into PS monomers and thus possessed photodynamic inactivation against bacteria. Interestingly, the disassembly of the bound PS aggregate in the presence of bacteria was intensified by illumination, generating more PS monomers and leading to an enhanced antibacterial photodynamic effect. This demonstrated that on a bacterial surface, the PS aggregate photo-inactivated bacteria via PS monomer during irradiation, where the photodynamic efficiency was retained without photobleaching. Further mechanistic studies showed that PS monomers disrupted bacterial membranes and affected the expression of genes related to cell wall synthesis, bacterial membrane integrity, and oxidative stress. The results obtained here are applicable to other types of PSs in PDT.


Subject(s)
Isoindoles , Organometallic Compounds , Photobleaching , Photochemotherapy , Photosensitizing Agents , Zinc Compounds , Zinc Compounds/chemistry , Photosensitizing Agents/chemistry , Isoindoles/chemistry , Escherichia coli/drug effects , Escherichia coli/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects
12.
RSC Adv ; 13(17): 11464-11471, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063725

ABSTRACT

Rutin is a flavonoid that exists in plants and in commonly consumed foods. In recent years, rutin has been demonstrated to have anti-thrombotic efficacy through its inhibition of protein disulfide isomerase. However, the low aqueous solubility and high dose limit the therapeutic applications of rutin. In this study, we found that the chelation of zinc ions increased rutin aqueous solubility by 4-fold. More importantly, the thus-formed rutin:Zn complex inhibited PDI activity more potently than rutin itself. In a murine model with electric current-induced arterial thrombosis, the rutin:Zn complex slowed mouse arterial occlusion compared to rutin without increasing bleeding risk. Thus, the zinc chelation not only improved rutin aqueous solubility but achieved stronger inhibition of PDI. Furthermore, zinc chelation of a selected list of flavonoids containing the adjacent keto and phenoxy groups also increased their inhibition of PDI. Hence, our study provides a strategy to promote flavonoids' anti-thrombotic properties.

13.
Int J Pharm ; 637: 122878, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36958614

ABSTRACT

Recombinant tissue-type plasminogen activator (rtPA, or Alteplase) is the first approved thrombolytic drug for acute ischemic stroke, but suffers from a short half-life and poor resistance to plasminogen activator inhibitor (PAI-1), limiting its clinical use. The development of novel thrombolytic agents with improved benefit/risk balance has always been of great significance. In this study, we identified a mutant of serine protease domain of tPA (named ΔtPAA146V) capable of escaping the inhibition by endogenous PAI-1 with 66-fold increased resistance compared to the wild type tPA. Based on this mutant, we generated a triple fusion ΔtPA (TriF-ΔtPA) containing albumin and fibrin binding peptide(FBP). The fusion with albumin effectively prolonged the plasma half-life of ΔtPA in mice to 144 min, which is much longer than ΔtPA and did not affect its thrombolytic activity. Furthermore, FBP rendered fibrin specificity of the fusion protein, giving a dissociation constant of âˆ¼ 25 ± 0.9 µM. In a novel murine carotid embolism-induced stroke (CES) model, i.v. administration of TriF-ΔtPA promoted vascular recanalization, reduced infarct volume, and mitigated neurobehavioral deficits more significantly compared to ΔtPA-HSA or Alteplase, showing little bleeding risk. Together, this long-acting PAI-1-resistant thrombolytic agent holds great potential for clinical applications.


Subject(s)
Embolism , Ischemic Stroke , Stroke , Mice , Animals , Tissue Plasminogen Activator/chemistry , Plasminogen Activator Inhibitor 1/chemistry , Ischemic Stroke/drug therapy , Fibrinolytic Agents/pharmacology , Stroke/drug therapy , Fibrin , Thrombolytic Therapy , Embolism/drug therapy
14.
J Med Chem ; 66(8): 5415-5426, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36854648

ABSTRACT

Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.


Subject(s)
Neoplasms , Urokinase-Type Plasminogen Activator , Humans , Urokinase-Type Plasminogen Activator/metabolism , Diltiazem , Glyburide , Neoplasms/pathology , Ligands
15.
Huan Jing Ke Xue ; 44(2): 878-888, 2023 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-36775611

ABSTRACT

With the aim of addressing the difficult problem of biodegradable organic nitrogen in biochemical effluent of a printing and dyeing industrial park, the combined ozonation-sequencing batch biofilm reactor (O3-SBBR) process was used for advanced treatment. The influencing factors and degradation kinetics were analyzed; quenching experiments were carried out; and the types of free radicals, succinate dehydrogenase activity, and denitrification function genes were determined. The results showed that the suitable ozonation condition was pH 8.0-8.5, O3 concentration was approximately 35.0 mg·L-1, O3 dosage was approximately 100.0 mg·L-1, and reaction time was 90.0-120.0 min. Organic nitrogen in the biochemical effluent by ozonation conformed to the pseudo first-order kinetic model, and the maximum rate constant k was 0.01035 min-1 (experimental conditions:pH 8.0, ozone dosage 150.0 mg·L-1, and ozone concentration 35.0 mg·L-1). Ozonation significantly improved the denitrification performance of the sequencing biofilm batch reactor (SBBR), and the denitrification efficiency increased from 19.8% (SBBR) to 32.9% (O3-SBBR). Ozonation could convert organic nitrogen and organic substances with strong toxicity and difficult biological utilization into small molecular substances with low toxicity and biodegradability. The abundance of functional genes (nirS, nirK, and nor) in the O3-SBBR combined process was significantly higher than that in the single SBBR, which further confirmed that ozonation could improve the nitrogen removal performance of SBBR. The operation cost of the combined process was 0.74-1.07 yuan·m-3, with good technical economy. This study provided a basis for the application of the O3-SBBR combined process in the advanced treatment of biochemical effluent in printing and dyeing industrial parks.


Subject(s)
Ozone , Water Pollutants, Chemical , Wastewater , Ozone/chemistry , Biofilms , Nitrogen , Printing, Three-Dimensional , Water Pollutants, Chemical/analysis
16.
Int J Pharm ; 634: 122636, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36696930

ABSTRACT

Urokinase plasminogen activator receptor (uPAR) is a key participant in extracellular proteolysis, tissue remodeling and cell motility. uPAR overexpresses in most solid tumors and several hematologic malignancies, but has low levels on normal tissues, thus is advocated as a molecular target for cancer therapy. One of the obstacles for the evaluation of uPAR targeting agents in preclinical study is the species specificity, where targeting agents for human uPAR  usually not bind to murine uPAR. Here, we develop a targeting agent that binds to both murine and human uPAR. This targeting agent is genetically fused to human serum albumin, a commonly used drug carrier, and the final construct is named as uPAR targeting carrier (uPARTC). uPARTC binds specifically to uPAR-overexpressing 293T/huPAR and 293T/muPAR as demonstrated by flow cytometry. A cytotoxic compound, celastrol, is embedded into uPARTC non-covalently. The resulting macromolecular complex show effective proliferation inhibition on both murine and human uPAR overexpressing cells, and exhibit potent antitumor efficacy on hepatoma H22-bearing mice. This work demonstrates that uPARTC is a promising tumor targeting drug carrier, which address the species-specificity challenge of uPAR targeting agents and can be used to load other cytotoxic compounds.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Drug Carriers , Receptors, Albumin , Albumins
17.
Mol Pharm ; 20(2): 905-917, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36463525

ABSTRACT

Triple-negative breast cancer (TNBC) is highly aggressive and causes a higher proportion of metastatic cases. However, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in the outcome of TNBC therapy. A urokinase-type plasminogen activator (uPA), one of the best-validated biomarkers of breast cancer, is an extracellular proteolytic serine protease involved in many pathological and physiological processes, including tumor cell invasion and metastasis. Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases and has been used as a therapeutic agent for the treatment of TNBC. Nevertheless, NM has poor specificity for serine proteases and is easy be hydrolyzed; moreover, the inhibitory mechanism of TNBC therapy is unclear. In this study, we combine NM with a macromolecular drug delivery vehicle, mouse amino-terminal fragment of urokinase-human serum albumin (mATF-HSA), to form a complex (mATF-HSA:NM) using the dilution-incubation-purification method. mATF specifically targets uPAR overexpressed on the surface of TNBC cells; moreover, HSA prevents NM from being hydrolyzed by numerous serine proteases. mATF-HSA:NM showed stronger inhibitory effects on the proliferation and metastasis of TNBC in vitro and in vivo without significant cytotoxicity on normal cells and tissues. In addition, we demonstrated that NM mediates metastasis of TNBC cells through inhibition of uPA using a stable uPA knockdown cell line (MDA-MB231 shuPA). Overall, we have developed a macromolecular complex targeted to treat high uPAR-expressing tumor types, and mATF-HSA can potentially be used to load other types of drugs with tumor-targeting specificity for mouse tumor models and is a promising tool to study tumor biology in mouse tumor models.


Subject(s)
Triple Negative Breast Neoplasms , Urokinase-Type Plasminogen Activator , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Serum Albumin, Human , Receptors, Urokinase Plasminogen Activator/metabolism , Treatment Outcome
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009872

ABSTRACT

OBJECTIVES@#To systematically evaluate the value of the platelet-to-lymphocyte ratio (PLR) in predicting coronary artery lesions (CAL) in Chinese children with Kawasaki Disease (KD).@*METHODS@#A comprehensive search was conducted in databases including PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Data, China Biomedical Literature Database, and China Science and Technology Journal Database from inception to December 2022. The quality of the included literature was assessed using the Newcastle-Ottawa Scale, and a Meta analysis was performed using Stata 15.1.@*RESULTS@#A total of ten published reports, involving 3 664 Chinese children with KD, were included in this Meta analysis, of whom 1 328 developed CAL. The Meta analysis revealed a sensitivity of 0.78 (95%CI: 0.71-0.83), specificity of 0.71 (95%CI: 0.61-0.80), overall diagnostic odds ratio of 8.69 (95%CI: 5.02-15.06), and an area under the curve of the summary receiver operating characteristic of 0.82 (95%CI: 0.78-0.85) for PLR in predicting CAL in the children with KD. The sensitivity, specificity, and area under the curve of summary receiver operating characteristic were lower for PLR alone compared to PLR in combination with other indicators. Sensitivity analysis demonstrated the stability of the Meta analysis results with no significant changes upon excluding individual studies. However, a significant publication bias was observed (P<0.001).@*CONCLUSIONS@#PLR demonstrates certain predictive value for CAL in Chinese children with KD.


Subject(s)
Child , Humans , Mucocutaneous Lymph Node Syndrome/pathology , Coronary Vessels/pathology , Lymphocytes , Biomarkers , China , Coronary Artery Disease/pathology
19.
J Clean Prod ; 379: 134632, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36246409

ABSTRACT

Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 µM, 2.70 µM, and 1.31 µM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 µM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.

20.
ACS Appl Mater Interfaces ; 14(41): 47003-47013, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214495

ABSTRACT

Air pollution caused by bacteria and viruses has posed a serious threat to public health. Commercial air purifiers based on dense fibrous filters can remove particulate matter, including airborne pathogens, but do not kill them efficiently. Here, we developed a double-grafted antibacterial fiber material for the high-efficiency capture and inactivation of airborne microorganisms. Tetracarboxyl phthalocyanine zinc, a photosensitizer, was first grafted onto the polyester (PET) fiber, followed by coating with chitosan on the surface of PET fiber to make a double-grafted fiber material. Under the irradiation of light with a specific wavelength (680 nm), double-grafted fiber materials killed up to 99.99% of Gram-positive bacteria and Gram-negative bacteria and had a significant antibacterial effect on drug-resistant bacteria. The double-grafted PET fiber showed broad-spectrum antibacterial activities and was capable to inactivate drug-resistant bacteria. Notably, in filtration experiments for airborne bacteria, this double-grafted PET fiber demonstrated a high bacteria capture efficiency (95.68%) better than the untreated PET fiber (64.87%). Besides, the double-grafted PET fiber was capable of efficiently killing airborne bacteria. This work provides a new idea for the development of air filtration materials that can efficiently kill airborne pathogen and has good biosafety.


Subject(s)
Chitosan , Polyesters , Photosensitizing Agents/pharmacology , Particulate Matter , Bacteria , Anti-Bacterial Agents/pharmacology , Zinc , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...