Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Heliyon ; 9(10): e20680, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860513

ABSTRACT

In this study, total alkaloids from Hemsleya chinensis were extracted and tested for their antioxidant properties. To optimize extraction methods, a single factor experiment was conducted to determine the total alkaloid concentrations of H. chinensis using the L9 (34) orthogonal design test method and the BP neural network (BPNN), resulting in the optimum extraction conditions for total alkaloids. The optimal conditions for H. chinensis alkaloids extraction with acid water are: HCl concentration is 0.50 %, extraction temperature is 85 °C, material-liquid ratio is 1:64.5, and extraction rate of alkaloids is 0.2785 ± 0.0003 mg/mL. The alkaloid from H. chinensis exhibited antioxidant activity in a quantity-effect relationship with activity. These findings showed that the procedure to be reasonable, the alkaloid extraction efficiency to be high, and the method could be used to extract the alkaloids of H. chinensis, improving the development of natural and healthy medicinal resources for the pharmaceutical and food industries.

3.
Front Plant Sci ; 14: 1138893, 2023.
Article in English | MEDLINE | ID: mdl-37056503

ABSTRACT

Hemsleya chinensis is a Chinese traditional medicinal plant, containing cucurbitacin IIa (CuIIa) and cucurbitacin IIb (CuIIb), both of which have a wide range of pharmacological effects, including antiallergic, anti-inflammatory, and anticancer properties. However, few studies have been explored on the key enzymes that are involved in cucurbitacins biosynthesis in H. chinensis. Oxidosqualene cyclase (OSC) is a vital enzyme for cyclizing 2,3-oxidosqualene and its analogues. Here, a gene encoding the oxidosqualene cyclase of H. chinensis (HcOSC6), catalyzing to produce cucurbitadienol, was used as a template of mutagenesis. With the assistance of AlphaFold2 and molecular docking, we have proposed for the first time to our knowledge the 3D structure of HcOSC6 and its binding features to 2,3-oxidosqualene. Mutagenesis experiments on HcOSC6 generated seventeen different single-point mutants, showing that single-residue changes could affect its activity. Three key amino acid residues of HcOSC6, E246, M261 and D490, were identified as a prominent role in controlling cyclization ability. Our findings not only comprehensively characterize three key residues that are potentially useful for producing cucurbitacins, but also provide insights into the significant role they could play in metabolic engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...