Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 285: 131443, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34329129

ABSTRACT

A novel simultaneous partial nitrification, endogenous denitrification and phosphorus removal (SPNEDpr) system was operated for 213 days in a sequencing batch reactor to treat real domestic sewage. The nutrient removal was achieved under an operation mode of intermittent aeration at unequal intervals with low oxygen concentrations. Through optimizing intermittent aeration conditions, the removal efficiencies of total inorganic nitrogen (TIN), PO43-P and chemical oxygen demand (COD) reached 78.40%, 98.13% and 84%, respectively. Low-oxygen (0.1-0.7 mg/L) and intermittent aeration effectively inhibited nitrite oxidation bacteria (NOB), maintaining stable partial nitrification with nitrite accumulation ratio of 96.45%. Notably, intermittent aeration promoted the formation of aerobic granular sludge, with the sludge particle size increasing from 217.2 ± 5.3 to 351.8 ± 4.8 µm, thereby enhancing the TIN loss efficiency (81.3%). The predominant genus was Candidatus_Competibacter (11.6%), which stored COD as intracellular carbon source and performed the endogenous denitrification. The SPNEDpr process provided a highly efficient and economical method for treating urban sewage.


Subject(s)
Nitrification , Phosphorus , Bioreactors , Denitrification , Nitrogen , Nutrients , Sewage , Waste Disposal, Fluid
2.
Sci Total Environ ; 757: 144048, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33316517

ABSTRACT

This work investigated the feasibility of a novel simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) plus anammox process treating real municipal wastewater from summer to winter (28.1- 15.3 °C). Two lab-scale sequential reactors were used in this study, namely EBPR-SN and Anammox sequencing batch reactors (SBRs). Long-term operation suggested that ammonium oxidizing bacteria abundance decreased from 1.67% to 0.89% whereas nitrite oxidizing bacteria decreased to nearly undetected in the EBPR-SN SBR, maintaining the stable nitritation (nitrite accumulation ratio: 98.3 ± 1.0%). Lowering airflow rate was effective to retain nitritation with temperature decrease. Reliable nutrient removal was still maintained in winter (16.4 ± 0.7 °C), i.e. the removal efficiencies for nitrogen and phosphorus were 80.0 ± 3.5% and 95.4 ± 5.2%, respectively, with short aerobic HRT (6.4 h) and low dissolved oxygen (0.2-1.5 mg/L). The percentage of anammox contribution to nitrogen-removal increased with temperature decrease, although Candidatus Brocadia abundance decreased. Additionally, the protection of extracellular polymeric substances was important to the successful performance.


Subject(s)
Ammonium Compounds , Wastewater , Bioreactors , Nitrogen , Oxidation-Reduction , Phosphorus , Seasons , Temperature
3.
Bioresour Technol ; 313: 123698, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32585454

ABSTRACT

This study used salinity (0.5 wt%, 0.75 wt%) to accelerate the formation of ammonia oxidizing bacteria (AOB)-enriched aerobic granular sludge in a lab-scale anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) reactor. Results confirmed that the average granule diameter increased from 298.7 to 425.4 µm after 45 days of salinity stress even with low dissolved oxygen. Extracellular polymeric substances increased from 149.5 to 387.7 mg/g VSS after salinity (0.75 wt%) treatment, in turn accelerating granulation. Partial nitrification was maintained under the salinity condition due to the relative high activity and abundance of AOB, and the observed nitrite accumulation ratio averaged 98.9%. Salinity favored glycogen-accumulating organisms over polyphosphate-accumulating organisms (PAOs)/denitrifying-PAOs, with the abundance of Candidatus_Competibacter increasing from 4.86% to 15.34% and the simultaneous partial nitrification-denitrification efficiency increasing from 74.4% to 91.1%, promoting N-removal potential. The P-removal performance was good under 0.5 wt% salinity but was inhibited under 0.75 wt% salinity.


Subject(s)
Nitrification , Sewage , Anaerobiosis , Bioreactors , Denitrification , Glycogen , Nitrogen/analysis , Phosphorus , Salinity , Waste Disposal, Fluid
4.
Bioprocess Biosyst Eng ; 43(11): 2039-2052, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32594316

ABSTRACT

In this study, a novel laboratory-scale synchronous enhanced biological phosphorus removal and semi-nitritation (termed as EBPR-SN) combined with anammox process was put forward for achieving nutrient elimination from municipal wastewater at 27 ℃. This process consisted of two 10 L sequencing batch reactors (SBRs), i.e. EBPR-SN SBR followed by Anammox SBR. The EBPR-SN SBR was operated for 400 days with five periods and the Anammox SBR was operated starting on period IV. Eventually, for treating municipal wastewater containing low chemical oxygen demand/nitrogen (COD/N) of 3.2 (mg/mg), the EBPR-SN plus Anammox system performed advanced total inorganic nitrogen (TIN) and P removal, with TIN and P removal efficiencies of 81.4% and 94.3%, respectively. Further analysis suggested that the contributions of simultaneous partial nitrification denitrification, denitrification, and anammox to TIN removal were 15.0%, 45.0%, and 40.0%, respectively. The enriched phosphorus-accumulating organisms (PAOs) in the EBPR-SN SBR facilitated P removal. Besides, the EBPR-SN SBR achieved P removal and provided stable anammox substrates, suggesting a short sludge retention time (SRT 12 d) could achieve synergy between ammonia-oxidizing bacteria and PAOs. These results provided an alternative process for treating municipal wastewater with limited organics.


Subject(s)
Bioreactors , Biotechnology/methods , Nitrogen/isolation & purification , Phosphorus/chemistry , Phosphorus/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Ammonia/chemistry , Biological Oxygen Demand Analysis , Denitrification , Equipment Design , Hydrogen-Ion Concentration , Nitrification , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/chemistry
5.
Bioresour Technol ; 310: 123471, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32388357

ABSTRACT

This study developed a two-stage process, including simultaneous enhanced biological phosphorus-removal and semi-nitritation (EBPR-SN) sequencing batch reactor (SBR), followed by Anammox SBR, to achieve advanced nitrogen (N) and phosphorus (P) removal from real sewage with low carbon/nitrogen (2.82). The long-term operation suggested that removal efficiencies for TIN (86.2 ± 3.5%) and P (95.0 ± 5.5%) were stably obtained, with nitrite accumulation ratio of 98.7% in EBPR-SN SBR. Mechanism analysis indicated contribution of anammox to N-removal being 57.3%-73.7% and superior P-removal due to the majority of removed organics (~74.5%) being stored by polyphosphate-accumulating organisms (PAOs). In EBPR-SN SBR, high-throughput sequencing showed ammonium-oxidizing bacteria was 0.03% while nitrite-oxidizing bacteria was not detected, and PAOs accounted for 30.07%. In Anammox SBR, Candidatus Brocadia (9.75%) was the only anammox bacteria. Remarkably, short aerobic hydraulic retention time (4.29 h) with low DO (0.3-1.2 mg/L) during the whole process provided desirable energy-saving.


Subject(s)
Microbiota , Phosphorus , Bioreactors , Nitrogen , Nutrients , Sewage
6.
Chemosphere ; 257: 127097, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32470541

ABSTRACT

The feasibility of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process was investigated in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage. Partial nitrification was maintained with average nitrite accumulation ratio of 90.3% during 266 days' operation. Removal efficiencies for NH4+-N (96.3%), total inorganic nitrogen (81.4%), and phosphorus (91.0%) were stably obtained when treated real sewage with low carbon/nitrogen (3.4), with simultaneous partial nitrification and denitrification efficiency of 73.1%. The mechanism analysis revealed that denitrifying glycogen-accumulating organisms (DGAOs) and denitrifying polyphosphate-accumulating organisms (DPAOs) played the main roles in N-removal and P-removal, respectively. Nitrite pathway and optimized use of the organic carbon available in the sewage were keys for the successful performance. Further microbial community illustrating that DGAOs Candidatus_Competibacter, DPAOs Dechloromonas, and ammonia-oxidizing bacteria Nitrosomonadaceae were main functional groups. Notably, sludge granulation was formed under long-term synchronous low dissolved oxygen and low sludge loading conditions, avoiding sludge bulking.


Subject(s)
Waste Disposal, Fluid , Anaerobiosis , Bioreactors/microbiology , Carbon , Denitrification , Nitrification , Nitrites , Nitrogen/metabolism , Nutrients , Oxygen , Phosphorus/metabolism , Sewage
7.
Environ Sci Technol ; 51(15): 8405-8413, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28661139

ABSTRACT

Achieving maintream anammox is critical for energy-neutral sewage treatment. This study presents a new way to achieve mainstream anammox, which couples anammox with denitratation (nitrate reduction to nitrite) instead of nitritation (ammonium oxidation to nitrite). An anoxic/oxic (A/O) biofilm system treating systhetic domestic wastewater was used to demonstrate this concept for over 400 days. This A/O biofilm system achieved a total nitrogen (TN) removal efficiency of 80 ± 4% from the influent with a low C/N ratio of 2.6 and a TN concentration of 60.5 mg/L. Nitrogen removal via anammox was found to account for 70% of dinitrogen production in the anoxic reactor. Batch tests confirmed that the anoxic biofilm could oxidize ammonium using nitrite as electron acceptor, and that it had a higher nitrate reduction rate than the nitrite reduction rate, thus producing nitrite for the anammox reaction. Metagenomic analysis showed that Candidatus Jettenia caeni and Candidatus Kuenenia stuttgartiensis were the top two dominant species in anoxic biofilm. Genes involved in the metabolism of the anammox process were detected in anoxic biofilm. The abundance of nitrate reductase (73360 hits) was much higher than nitrite reductase (13114 hits) in anoxic biofilm. This system can be easily integrated with the high-rate activated sludge technology, which produces an effluent with a low C/N ratio. While this new design consumes 21% more oxygen in comparison to the currently studied nitritation/anammox process, the nitrite-producing process appears to be more stable.


Subject(s)
Bioreactors , Denitrification , Anaerobiosis , Nitrogen , Oxidation-Reduction , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...