Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1136005, 2023.
Article in English | MEDLINE | ID: mdl-36777250

ABSTRACT

The inadequacy of existing colorectal imaging tools has significantly obstructed the efficient detection of colorectal cancer. To address this issue, this work presents the cross-scale endoscopic imaging of rectal tumors with a combined photoacoustic/ultrasound tomography system and wide-field optical microscopy. This multimodal system combines the merits of centimeter-scale deep penetration, multi-spectral imaging, cross-scale imaging ability, low system cost, and 360° view in a single modality. Results indicated that the proposed system could reliably depict the location of the cancer invasion depth spectroscopically with indocyanine green The tumor angiogenesis can be well identified in the wide-field optical imaging mode, which helps to localize the tumors and guide the following photoacoustic/ultrasound scan. This work may facilitate the accurate characterization of colorectal cancer and promote the clinical translation of photoacoustic-based colorectal endoscopy.

2.
Biosensors (Basel) ; 12(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35884265

ABSTRACT

This paper aims to propose a new photoacoustic/ultrasound endoscopic imaging reconstruction algorithm based on the approximate Gaussian acoustic field which significantly improves the resolution and signal-to-noise ratio (SNR) of the out-of-focus region. We demonstrated the method by numerical calculations and investigated the applicability of the algorithm in a chicken breast phantom. The validation was finally performed by the rabbit rectal endoscopy experiment. Simulation results show that the lateral resolution of the target point in the out-of-focus region can be well optimized with this new algorithm. Phantom experimental results show that the lateral resolution of the indocyanine green (ICG) tube in the photoacoustic image is reduced from 3.975 mm to 1.857 mm by using our new algorithm, which is a 52.3% improvement. Ultrasound images also show a significant improvement in lateral resolution. The results of the rabbit rectal endoscopy experiment prove that the algorithm we proposed is capable of providing higher-quality photoacoustic/ultrasound images. In conclusion, the algorithm enables fast acoustic resolution photoacoustic/ ultrasonic dynamic focusing and effectively improves the imaging quality of the system, which has significant guidance for the design of acoustic resolution photoacoustic/ultrasound endoscopy systems.


Subject(s)
Photoacoustic Techniques , Acoustics , Algorithms , Animals , Endoscopy , Phantoms, Imaging , Photoacoustic Techniques/methods , Rabbits
3.
Biosens Bioelectron ; 215: 114560, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35841765

ABSTRACT

In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.


Subject(s)
Biosensing Techniques , Magnetite Nanoparticles , Biosensing Techniques/methods , Immunoassay , Magnetic Fields , Magnetics/methods , Magnetite Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...