Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(25): eadp0730, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896623

ABSTRACT

Flexible and stretchable electronic devices are subject to failure because of vulnerable circuit interconnections. We develop a low-voltage (1.5 to 4.5 V) and rapid (as low as 5 s) electric welding strategy to integrate both rigid electronic components and soft sensors in flexible circuits under ambient conditions. This is achieved through the design of conductive elastomers composed of borate ester polymers and conductive fillers, which can be self-welded and generate welding effects to various materials including metals, hydrogels, and other conductive elastomers. The welding effect is generated through the electrochemical reaction-triggered exposure of interfacial adhesive promotors or the cleavage/reformation of dynamic bonds. Our strategy can ensure both mechanical compliance and conductivity at the circuit interfaces and easily produce welding strengths in the kilopascal to megapascal range. The as-designed conductive elastomers in combination with the electric welding technique provide a robust platform for constructing standalone flexible and stretchable electronic devices that are detachable and assemblable on demand.

2.
J Am Chem Soc ; 146(14): 9709-9720, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38546406

ABSTRACT

Chemically modifying monolayer two-dimensional transition metal dichalcogenides (TMDs) with organic molecules provides a wide range of possibilities to regulate the electronic and optoelectronic performance of both materials and devices. However, it remains challenging to chemically attach organic molecules to monolayer TMDs without damaging their crystal structures. Herein, we show that the Mo atoms of monolayer MoS2 (1L-MoS2) in defect states can coordinate with both catechol and 1,10-phenanthroline (Phen) groups, affording a facile route to chemically modifying 1L-MoS2. Through the design of two isomeric molecules (LA2 and LA5) comprising catechol and Phen groups, we show that attaching organic molecules to Mo atoms via coordinative bonds has no negative effect on the crystal structure of 1L-MoS2. Both theoretical calculation and experiment results indicate that the coordinative strategy is beneficial for (i) repairing sulfur vacancies and passivating defects; (ii) achieving a long-term and stable n-doping effect; and (iii) facilitating the electron transfer. Field effect transistors (FETs) based on the coordinatively modified 1L-MoS2 show high electron mobilities up to 120.3 cm2 V-1 s-1 with impressive current on/off ratios over 109. Our results indicate that coordinatively attaching catechol- or Phen-bearing molecules may be a general method for the nondestructive modification of TMDs.

3.
Small ; 20(22): e2309176, 2024 May.
Article in English | MEDLINE | ID: mdl-38150625

ABSTRACT

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

4.
Article in English | MEDLINE | ID: mdl-37878837

ABSTRACT

Hydrogels have attracted widespread attention in anticounterfeiting due to their unique physical/chemical properties and designability. However, hydrogels' poor mechanical properties and sluggish response to chemical stimuli pose challenges for their wide application. A fluorescent tough organohydrogel capable of freeform writing of information is reported in this work. By incorporation of the fluorescent monomer 7-methylacryloxy-4-methylcoumarin into the polyacrylamide network in a covalently cross-linked manner while intertwining with the carboxymethyl cellulose sodium network, a fluorescent tough organohydrogel with a dual-network structure is prepared. The organohydrogel shows acid-base-mediated adjustable fluorescence through the transformation of fluorescent monomers. Ion printing and electrical stimulation design achieved free information storage and encryption. In addition, the prepared organohydrogel has good antifreezing properties and can be encrypted and decrypted at subzero temperatures. The encrypted information in the organohydrogel can be read only after UV-light irradiation. These patterned fluorescent organohydrogels should find applications in protected message displays for improved information security.

5.
Macromol Rapid Commun ; 43(23): e2200562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35926186

ABSTRACT

The underlying trend of colloidal synthesis has focused on extending the structure and composition complexity of colloidal particles. Hollow and yolk-shell particles are successful examples that have potential applications in frontier fields. In this paper, a facile and controllable etching method based on the molecular exchange of the dynamic imine bond to generate cavities in polymer particles is developed. Starting from boronate ester polymer particles and inorganic@boronate core-shell particles with the imine bonds incorporated in the polymer networks, the etching method easily affords hollow and yolk-shell particles with tunable shell thicknesses. The molecular exchange dynamics analysis indicates that guest amine molecules cause the reconstruction of imine bonds and the leakage of molecular and oligomer fragments, resulting in the formation of the hollow structure. This molecular exchange-based etching method may be of interest in the construction of polymer architectures with increased composition and structure complexities.

6.
Adv Sci (Weinh) ; 9(24): e2201685, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35798314

ABSTRACT

Stimuli-responsive supercapacitors have attracted broad interest in constructing self-powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli-responsive behavior. Herein, this issue is addressed by designing a MoS2 @carbon core-shell structure with ultrathin MoS2 nanosheets incorporated in the carbon matrix. In the three-electrode system, MoS2 @carbon delivers a specific capacitance of 1302 F g-1 at a current density of 1.0 A g-1 and shows a 90% capacitance retention after 10 000 charging-discharging cycles. The MoS2 @carbon-based asymmetric supercapacitor displays an energy density of 75.1 Wh kg-1 at the power density of 900 W kg-1 . Because the photo-generated electrons can efficiently migrate from MoS2 nanosheets to the carbon matrix, the assembled photo-responsive supercapacitor can answer the stimulation of ultraviolet-visible-near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm-2 ), the device exhibits a ≈4.50% (≈13.9 F g-1 ) increase in capacitance after each charging-discharging cycle. The study provides a guideline for designing multi-functional supercapacitors that serve as both the energy supplier and the photo-detector.

7.
Small ; 18(33): e2203148, 2022 08.
Article in English | MEDLINE | ID: mdl-35871499

ABSTRACT

Metallopolymers combine the property features of both metallic compounds and organic polymers, representing a typical direction for the design of high-performance hybrid materials. Here, a highly adaptive etching method to create pores and cavities in the metallopolymer particles is established. Starting from boronate polymer (BP) and inorganic@BP core-shell particles, porous, hollow, and yolk-shell metallopolymer particles can be fabricated, respectively. By taking advantage of the easy control over composition and pore/cavity structure, these metallopolymer particles provide a universal platform for the fabrication of nitrogen, boron co-doped carbon nanocomposites loaded with metals (M-NBCs). The as-prepared M-NBCs exhibit remarkable catalytic activities toward oxygen evolution reaction and hydrogen evolution reaction. An alkaline overall water splitting cell assembled by using M-NBCs as the anode and cathode can be driven by a single AAA battery. The proposed strategy for the construction of metallopolymer composites may enlighten for the design of complex hybrid nanomaterials.


Subject(s)
Nanocomposites , Polymers , Catalysis , Nanocomposites/chemistry , Polymers/chemistry , Porosity , Water
8.
Nanotechnology ; 33(40)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35732158

ABSTRACT

We report a simple metal ion-catechol coordination strategy to coat ruthenium-catechol polymer complex (TAC-Ru) on the surface of carbon nanotubes (CNT) to form a core-shell structure (abbreviated as CNT@TAC-Ru). This is achieved by firstly polymerizing catechol and boronic acid monomers on the surface of CNT to form a boronate ester polymer (BP) shell. Then, Ru3+is used to etch the BP shell, and cleave the dynamic boronate ester bond, leading to the formation of a CNT@ruthenium-catechol coordination complex based on the coordinative efficiency of the catechol group. The electrocatalytic property of the CNT@TAC-Ru composite can be activated through electrochemical cycling treatment. The as-activated CNT@TAC-Ru exhibits evidently improved hydrogen evolution reaction (HER) performance with an overpotential of 10 mV in 1.0 M KOH at a current density of 10 mA cm-2, which is better than that of commercial Pt/C (32 mV). And the long-term stability is also desirable. This work provides a pyrolysis-free method to form metal-polymer-carbon composite with high HER performance under the alkaline condition.

9.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566877

ABSTRACT

In this paper, the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing diblock copolymer poly[(p-hydroxybenzaldehyde methacrylate)m-b-(2-((6-oxidodibenzo[c,e][1,2]oxaphosphinin-6-yl)oxy)ethyl methacrylate)n] (abbrev. poly(HAMAm-b-HEPOMAn)) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. When it was continued to react with titanium-hybridized aminopropyl-polyhedral oligomeric silsesquioxane (Ti-POSS) through a Schiff-base reaction, new grafted copolymers poly[(Ti-POSS-HAMA)m-b-HEPOMAn] (abbrev. PolyTi) were obtained. Then, they were used as macromolecular flame retardant to modify epoxy resin materials. The thermal, flame retardant and mechanical properties of the prepared EP/PolyTi composites were tested by TGA, DSC, LOI, UL-94, SEM, Raman, DMA, etc. The migration of phosphorus moiety from epoxy resin composites was analyzed by immersing the composites into ethanol/H2O solution and recording the extraction solution by UV-Vis spectroscopy. The results showed that the added PolyTi enhanced the glass transition temperature, the carbon residue, the graphitization of char, LOI, and mechanical properties of the EP/PolyTi composites when compared to pure cured EP. Furthermore, the phosphorus moieties were more likely to migrate from EP/DOPO composites than that from EP/PolyTi composites. Obviously, compared with small molecular flame retardant modified EP, the macromolecular flame retardant modified EP/PolyTi composites exhibited better thermal stability, flame retardancy, and resistance to migration.

10.
J Am Chem Soc ; 144(22): 9624-9633, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35605024

ABSTRACT

Imine-linked covalent organic frameworks (COFs) have received widespread attention because of their structure features such as high crystallinity and tunable pores. However, the intrinsic reversibility of the imine bond leads to the poor stability of imine-linked COFs under strong acid conditions. Also, their thermal stability is significantly lower than that of many other COFs. Herein, we report for the first time that the reversible imine bonds in the skeleton of COFs can be locked through the asymmetric hydrophosphonylation reaction of phosphite. The functionalized COFs not only retain the crystallinity and porous structure but also exhibit evidently improved chemical and thermal stabilities. In addition, the phosphorous acid groups generated by acidic hydrolysis attached to the skeleton endow the COFs with good intrinsic proton conductivity. Due to the diversity of phosphite derivatives and imine-linked COFs, this work may provide an avenue for extending the COF structures and functions through the asymmetric hydrophosphonylation reaction.

11.
Carbohydr Polym ; 288: 119384, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450646

ABSTRACT

Multifunctional cotton fabrics (M-CF) have important application prospects in intelligent home decoration and material packaging. In this work, nanoparticles (AgNC@BP) were prepared by coating the surface of silver nanocubes (AgNCs) with borate polymer. Subsequently, M-CF with electromagnetic wave (EMW) absorption, mechanical enhancement, flame-retardancy and antibacterial performances were prepared by immersing cotton fabrics (CF) into AgNC@BP/crosslinked chitosan (CS) solution. Expectantly, AgNC@BP endows AgNC@BP/CS-CF with good flame retardancy and low combustion heat release. That is, the char length of AgNC@BP/CS-CF is 7.9 cm after the vertical burning test (UL-94 V) and the peak heat release rate (pHRR) of AgNC@BP/CS-CF is reduced by 21.4% compared to pure CF. Meanwhile, the tensile strength of AgNC@BP/CS-CF is 18.8% higher than that of CF. Synchronously, the introduction of AgNC@BP can also endow M-CF with better EMW absorption, mechanical and antibacterial properties. In conclusion, this work provides a tactic for fabricating M-CF.


Subject(s)
Chitosan , Flame Retardants , Anti-Bacterial Agents/pharmacology , Cotton Fiber , Polymers
12.
J Colloid Interface Sci ; 616: 268-278, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35219192

ABSTRACT

In order to overcome the structural drawbacks of layered electrodes in flexible supercapacitors, the construction of an electrode frame with high adaptability for the loading of different active materials makes the production of flexible supercapacitors simpler and more accurate. Herein, a novel loader type flexible supercapacitor with three-dimensional hybrid structure is built. In our design, the acetylene black and active material are enriched in the polyvinyl alcohol matrix, and the three-dimensional conductive network that can load different active material is formed. The active material can be selected on demand. The basic electrode (also a loader) formed by polyvinyl alcohol and acetylene black is an electronic conductor (∼1 Scm-1) with good electrochemical and mechanical performance. By loading active materials in this basic electrode, more powerful flexible electrodes can be built easily and accurately with the same steps according to the designed proportion. Electrodes constructed according to this method deliver nonnegligible surface capacity (e.g. 1.1 Fcm-2 in surface capacitance, polyaniline/carbon nanotube composite as active materials) with good response, rate performance, excellent durability (10000 times of charge-discharge), and good foldability (1000 times of folding). This pattern of carrier type electrodes provides a simple and universal strategy for manufacturing flexible supercapacitors.

13.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160395

ABSTRACT

Due to unique chelating and macrocyclic effects, crown ether compounds exhibit wide application prospects. They could be introduced into amphiphilic copolymers to provide new trigger mode for drug delivery. In this work, new amphiphilic random polymers of poly(lipoic acid-methacrylate-co-poly(ethylene glycol) methyl ether methacrylate-co-N-isopropylacrylamide-co-benzo-18-crown-6-methacrylamide (abbrev. PLENB) containing a crown ether ring and disulphide bond were synthesized via RAFT polymerization. Using the solvent evaporation method, the PLENB micelles were formed and then used to load substances, such as doxorubicin hydrochloride (DOX) and gold nanoparticles. The results showed that PLENB exhibited a variety of lowest critical solution temperature (LCST) in response to the presence of different ions, such as K+, Na+ and Mg2+. In particular, the addition of 150 mM K+ increased the LCST of PLENB from 31 to 37 °C and induced the release of DOX from the PLENB@DOX assemblies with a release rate of 99.84% within 12 h under 37 °C. However, Na+ and Mg2+ ions could not initiate the same response. Furthermore, K+ ions drove the disassembly of gold aggregates from the PLENB-SH@Au assemblies to achieve the transport of Au NPs, which is helpful to construct a K+-triggered carrier system.

14.
Sci Robot ; 6(53)2021 04 14.
Article in English | MEDLINE | ID: mdl-34043565

ABSTRACT

Although there have been notable advances in adhesive materials, the ability to program attaching and detaching behavior in these materials remains a challenge. Here, we report a borate ester polymer hydrogel that can rapidly switch between adhesive and nonadhesive states in response to a mild electrical stimulus (voltages between 3.0 and 4.5 V). This behavior is achieved by controlling the exposure and shielding of the catechol group through water electrolysis-induced reversible cleavage and reformation of the borate ester moiety. By switching the electric field direction, the hydrogel can repeatedly attach to and detach from various surfaces with a response time as low as 1 s. This programmable attaching/detaching strategy provides an alternative approach for robot climbing. The hydrogel is simply pasted onto the moving parts of climbing robots without complicated engineering and morphological designs. Using our hydrogel as feet and wheels, the tethered walking robots and wheeled robots can climb on both vertical and inverted conductive substrates (i.e., moving upside down) such as stainless steel and copper. Our study establishes an effective route for the design of smart polymer adhesives that are applicable in intelligent devices and an electrochemical strategy to regulate the adhesion.

15.
Nanotechnology ; 32(30)2021 May 04.
Article in English | MEDLINE | ID: mdl-33827051

ABSTRACT

Schiff base formation reaction is highly dynamic, and the microstructure of Schiff base polymers is greatly affected by reaction kinetics. Herein, a series of Schiff base cross-linked polymers (SPs) with different morphologies are synthesized through adjusting the species and amount of catalysts. Nitrogen/oxygen co-doped hierarchical porous carbon nanoparticles (HPCNs), with tunable morphology, specific surface area (SSA) and porosity, are obtained after one-step carbonization. The optimal sample (HPCN-3) possesses a coral reef-like microstructure, high SSA up to 1003 m2g-1, and a hierarchical porous structure, exhibiting a remarkable specific capacitance of 359.5 F g-1(at 0.5 A g-1), outstanding rate capability and cycle stability in a 1 M H2SO4electrolyte. Additionally, the normalized electric double layer capacitance (EDLC) and faradaic capacitance of HPCN-3 are 0.239 F m-2and 10.24 F g-1respectively, certifying its superior electrochemical performance deriving from coral reef-like structure, high external surface area and efficient utilization of heteroatoms. The semi-solid-state symmetrical supercapacitor based on HPCN-3 delivers a capacitance of 55 F g-1at 0.5 A g-1, good cycle stability of 86.7% after 5000 GCD cycles at 10 A g-1, and the energy density ranges from 7.64 to 4.86 Wh kg-1.

16.
J Colloid Interface Sci ; 590: 591-600, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33581662

ABSTRACT

This paper rationally designs the morphology and phase structure of carbon nanotube/polyaniline@MoS2 (CNT/PANI@MoS2) composites, with MoS2 conductive wrapping growing vertically on the outer layer of the composites via hydrothermal method. The crystalline nature and chemical properties are characterized by X-ray diffraction (XRD), Flourier transformation infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS). Morphology and microstructures are determined by Scanning electric microscopy (SEM), Transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET). The developed composites possess excellent electrochemical properties (the specific capacitance is substantially increased by ~119%, reaching 700.0 F g-1 after wrapping by MoS2) and good cycling stability (after over 5000 cycles retains 80.8% capacitance) in three-electrode systems, which indicating that the unique morphology of MoS2 shells endow the channels to composites for rapid charge transport and ionic diffusion. Furthermore, symmetric supercapacitors devices assembled with the CNT/PANI@MoS2 composites achieve specific capacitance of 459.7 F g-1 at 1 A g-1, capacitance retention is 97.4% after 10,000 cycles and reach superior energy density of 40.9 Wh kg-1 at the power density of 400 W kg-1. This strategy of three-dimensional wrapping method may open up a new potential to relieve the dilemma of degraded performance of supercapacitor, while improving the capacitance and stability for supercapacitors.

17.
Light Sci Appl ; 9: 182, 2020.
Article in English | MEDLINE | ID: mdl-33133522

ABSTRACT

Stress sensing is the basis of human-machine interface, biomedical engineering, and mechanical structure detection systems. Stress sensing based on mechanoluminescence (ML) shows significant advantages of distributed detection and remote response to mechanical stimuli and is thus expected to be a key technology of next-generation tactile sensors and stress recorders. However, the instantaneous photon emission in ML materials generally requires real-time recording with a photodetector, thus limiting their application fields to real-time stress sensing. In this paper, we report a force-induced charge carrier storage (FICS) effect in deep-trap ML materials, which enables storage of the applied mechanical energy in deep traps and then release of the stored energy as photon emission under thermal stimulation. The FICS effect was confirmed in five ML materials with piezoelectric structures, efficient emission centres and deep trap distributions, and its mechanism was investigated through detailed spectroscopic characterizations. Furthermore, we demonstrated three applications of the FICS effect in electronic signature recording, falling point monitoring and vehicle collision recording, which exhibited outstanding advantages of distributed recording, long-term storage, and no need for a continuous power supply. The FICS effect reported in this paper provides not only a breakthrough for ML materials in the field of stress recording but also a new idea for developing mechanical energy storage and conversion systems.

18.
Materials (Basel) ; 13(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114736

ABSTRACT

Introduction of both nitrogen and transition metal elements into the carbon materials has demonstrated to be a promising strategy to construct highly active electrode materials for energy shortage. In this work, through the coordination reaction between Fe3+ and 1,3,5-tris(4-aminophenyl)benzene, metallosupramolecular polymer precursors are designed for the preparation of carbon flakes co-doped with both Fe and N elements. The asprepared carbon flakes display wrinkled edges and comprise Fe3C nanoparticle and active site of Fe-Nx. These carbon materials exhibit excellent electrocatalytic performance. Towards oxygen reduction reaction (ORR), the optimized sample has Eonset and Ehalf-wave of 0.93 V and 0.83 V in alkaline system, respectively, which are very close to that of Pt/C. This approach may offer a new way to high performance and lowcost electrochemical catalysts.

19.
ACS Appl Mater Interfaces ; 12(18): 20479-20489, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32283918

ABSTRACT

Hydrogel electrolytes are of particular interest in the fabrication of flexible supercapacitors that are able to withstand deformation and physical damage. Nevertheless, there still exists a huge space in the design of hydrogel electrolytes with comprehensive performances including high processability, conductivity, mechanical strength, and self-healability. Herein, a slidable polymer network is constructed through the cross-linking reaction among commercially available polyethyleneimine (PEI), polyvinyl alcohol (PVA), and 4-formylphenylboronic acid (Bn) to generate PEI-PVA-Bn hydrogels, which have high adaptability to various electrolytes such as LiCl, NaCl, KCl, and ionic liquids. The as formed hydrogel electrolytes not only show excellent mechanical property (elongation at break up to 1223%, strength of 34.6 kPa) and self-healability (highest strain self-healing efficiency reaches 94.3% within 2 min) but also exhibit high conductivity (up to 21.49 mS cm-1). Flexible supercapacitors constructed by sandwiching the PEI-PVA-Bn-LiCl hydrogel electrolyte between two multiwalled carbon nanotube electrodes demonstrate a broadened operating potential window of 1.4 V, specific capacitance of 16.7 mF cm-2, high cycling stability up to 10 000 charge/discharge cycles, and excellent mechanical stability.

20.
J Biomater Sci Polym Ed ; 31(7): 849-868, 2020 05.
Article in English | MEDLINE | ID: mdl-32009554

ABSTRACT

In this article, we introduce a pH-responsive charge-reversible and photo-crosslinkable polymer nanoparticle. It is prepared via typical self-assembly from a block copolymer poly((7-(4-vinyl-benzyloxyl)-4-methylcoumarin)-co-acrylicacid)-b-poly((2-dimethylamino) ethyl methacrylate)-co-styrene) (P(VBMC-co-AA)-b-P(DMAEMA-co-St)), whose two blocks have different ionizable moieties. In an aqueous solution of pH ≤ 4, the cationic polymer nanoparticles are formed due to the fully protonated PDMAEMA. At a pH ranging from 5.0 to 7.8, partially ionized PAA and protonated PDMAEMA lead to the formation of polymer nanoparticles with a mixed shell. In a pH range of 8-10, a large amount of precipitation is produced within the isoelectric point (IEP) region because of the weak hydrophilic two blocks. In an aqueous solution of pH ≥ 10, polymer nanoparticles are reformed with PAA shell and P(DMAEMA-co-St) core. The coumarin groups of polymer can undergo photo-crosslinking and photo-cleavage reactions under UV light irradiation at λ = 365 nm and λ = 254 nm, respectively. The reversible nature of the photo-reaction can regulate the reversal of polymer nanoparticles. Furthermore, the aggregation-induced fluorescence emission (AIFE) property of polymer nanoparticles at different pH is tested by fluorescence emission spectra. The results indicate that the aggregation state of coumarin blocks in solution also changes with the pH value. The DOX release experiment in vitro shows that the release behavior of DOX-loaded nanoparticles can be adjusted by pH and light to achieve significant control. The inhibitory effect on the growth of tumor cells is displayed by cellular uptake and cytotoxicity test in vitro. The self-assembly system of polymer nanoparticles can be cooperatively controlled by multiple stimulations and displays potential applications in controlled drug delivery.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Photochemical Processes , Polymers/chemistry , Delayed-Action Preparations , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...