Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Solid Earth ; 126(12): e2021JB022392, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35865454

ABSTRACT

The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), launched May 22, 2018 and collecting science data since June 2018, is extending the 15-year data record of Earth mass change established by its predecessor GRACE mission (2002-2017). The GRACE-FO satellites carry onboard a novel technology demonstration instrument for intersatellite ranging, the Laser Ranging Interferometer (LRI), in addition to the microwave interferometer (MWI) carried on GRACE. The LRI has out-performed its in-orbit performance requirements both in terms of accuracy as well as the duration of tracking. Here, we compare and validate LRI-based gravity solutions for January 2019 to September 2020 against the MWI solutions. The comparison between the two sets of gravity solutions shows great similarities in general and nearly perfect consistency at a large hydrologic basin spatial scale (100,000 km2 and above), commonly viewed as the spatial resolution established by GRACE. The comparison in the spectral domain shows differences at the higher degrees of the spectrum, with lower error in the zonal and near zonal terms for the LRI solutions. We conclude that the LRI observations can be used to recover time-varying gravity signals to at least the level of accuracy established by the MWI-based solutions. This is a promising finding, especially when considering the benefits of using the LRI over the MWI, such as the great stability of the instrument and the low occurrence of instrument reboot events.

2.
Science ; 300(5617): 299-303, 2003 Apr 11.
Article in English | MEDLINE | ID: mdl-12624177

ABSTRACT

The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.


Subject(s)
Dry Ice , Mars , Atmosphere , Gravitation , Mathematics , Pressure , Rotation , Temperature
3.
Science ; 278(5344): 1749-52, 1997 Dec 05.
Article in English | MEDLINE | ID: mdl-9388168

ABSTRACT

Doppler and range measurements to the Mars Pathfinder lander made using its radio communications system have been combined with similar measurements from the Viking landers to estimate improved values of the precession of Mars' pole of rotation and the variation in Mars' rotation rate. The observed precession of -7576 +/- 35 milliarc seconds of angle per year implies a dense core and constrains possible models of interior composition. The estimated annual variation in rotation is in good agreement with a model of seasonal mass exchange of carbon dioxide between the atmosphere and ice caps.


Subject(s)
Extraterrestrial Environment , Mars , Atmosphere , Carbon Dioxide , Ferrous Compounds , Ice , Iron , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...