Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 156(1): 59-75, 2021 01.
Article in English | MEDLINE | ID: mdl-32383496

ABSTRACT

Natural scenes contain complex visual cues with specific features, including color, motion, flicker, and position. It is critical to understand how different visual features are processed at the early stages of visual perception to elicit appropriate cellular responses, and even behavioral output. Here, we studied the visual orientation response induced by flickering stripes in a novel behavioral paradigm in Drosophila melanogaster. We found that free walking flies exhibited bandpass orientation response to flickering stripes of different frequencies. The most sensitive frequency spectrum was confined to low frequencies of 2-4 Hz. Through genetic silencing, we showed that lamina L1 and L2 neurons, which receive visual inputs from R1 to R6 neurons, were the main components in mediating flicker-induced orientation behavior. Moreover, specific blocking of different types of lamina feedback neurons Lawf1, Lawf2, C2, C3, and T1 modulated orientation responses to flickering stripes of particular frequencies, suggesting that bandpass orientation response was generated through cooperative modulation of lamina feedback neurons. Furthermore, we found that lamina feedback neurons Lawf1 were glutamatergic. Thermal activation of Lawf1 neurons could suppress neural activities in L1 and L2 neurons, which could be blocked by the glutamate-gated chloride channel inhibitor picrotoxin (PTX). In summary, lamina monopolar neurons L1 and L2 are the primary components in mediating flicker-induced orientation response. Meanwhile, lamina feedback neurons cooperatively modulate the orientation response in a frequency-dependent way, which might be achieved through modulating neural activities of L1 and L2 neurons.


Subject(s)
Brain/physiology , Neurons/physiology , Orientation, Spatial/physiology , Visual Perception/physiology , Animals , Drosophila melanogaster , Feedback , Photic Stimulation
2.
iScience ; 23(4): 101041, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32325414

ABSTRACT

Many animals perceive features of higher-order visual motion that are beyond the spatiotemporal correlations of luminance defined in first-order motion. Although the neural mechanisms of first-order motion detection have become understood in recent years, those underlying higher-order motion perception remain unclear. Here, we established a paradigm to assess the detection of theta motion-a type of higher-order motion-in freely walking Drosophila. Behavioral screening using this paradigm identified two clusters of neurons in the central brain, designated as R18C12, which were required for perception of theta motion but not for first-order motion. Furthermore, theta motion-activated R18C12 neurons were structurally and functionally located downstream of visual projection neurons in lobula, lobula columnar cells LC16, which activated R18C12 neurons via interactions of acetylcholine (ACh) and muscarinic acetylcholine receptors (mAChRs). The current study provides new insights into LC neurons and the neuronal mechanisms underlying visual information processing in complex natural scenes.

3.
J Neurosci ; 36(16): 4635-46, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27098704

ABSTRACT

Correct pathfinding and target recognition of a developing axon are exquisitely regulated processes that require multiple guidance factors. Among these factors, the second messengers, cAMP and cGMP, are known to be involved in establishing the guidance cues for axon growth through different intracellular signaling pathways. However, whether and how cGMP-dependent protein kinase (PKG) regulates axon guidance remains poorly understood. Here, we show that the motor axons of intersegmental nerve b (ISNb) in the Drosophila embryo display targeting defects during axon development in the absence of foraging(for), a gene encoding PKG.In vivo tag expression revealed PKG to be present in the ventral nerve code at late embryonic stages, supporting its function in embryonic axon guidance. Mechanistic studies showed that the transcription factor longitudinal lacking(lola) genetically interacts with for.PKG physically associates with the LolaT isoform via the C-terminal zinc-finger-containing domain. Overexpression of PKG leads to the cytoplasmic retention of LolaT in S2 cells, suggesting a role for PKG in mediating the nucleocytoplasmic trafficking of Lola. Together, these findings reveal a novel function of PKG in regulating the establishment of neuronal connectivity by sequestering Lola in the cytoplasm. SIGNIFICANCE STATEMENT: Axon pathfinding and target recognition are important processes in the formation of specific neuronal connectivity, which rely upon precise coordinated deployment of multiple guidance factors. This paper reveals the role of cGMP-dependent protein kinase (PKG) in regulating the pathfinding and targeting of the developing axons in Drosophila Moreover, our study indicates that PKG regulates the cytoplasmic-nuclear trafficking of the transcription factor LolaT, suggesting a mechanism of PKG in directing motor axon guidance. These findings highlight a new function of PKG in axon guidance by suppressing a transcription factor.


Subject(s)
Axons/metabolism , Cyclic GMP-Dependent Protein Kinases/physiology , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Drosophila , Drosophila Proteins/genetics , Female , Male , Protein Transport/physiology , Transcription Factors/genetics
4.
Learn Mem ; 22(1): 56-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25512578

ABSTRACT

Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut-Type I adenylyl cyclase and Dnc-phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation.


Subject(s)
Conditioning, Psychological/physiology , Drosophila/physiology , Flight, Animal/physiology , Orientation/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Adenylyl Cyclases/metabolism , Animals , Animals, Genetically Modified , Cyclic AMP/metabolism , Drosophila Proteins/metabolism , Hot Temperature , Male , Neurons/physiology , Physical Stimulation , Rotation , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...