Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids ; 55(5): 469-477, 2020 09.
Article in English | MEDLINE | ID: mdl-32542681

ABSTRACT

Soybean (Glycine max) meal is an important protein source. Soybean meal with lower phytate and oligosaccharides improves meal quality. A single recessive mutation in soybean myo-inositol 1-phosphate synthase (Gm-lpa-TW75-1) confers a seed phenotype with low phytate and increased inorganic phosphate. The mutant was crossed with high oil lines expressing a diacylglycerol acyltransferase1 (DGAT) gene from Vernonia galamensis (VgD). Gm-lpa-TW75-1 X VgD, designated GV, has 21%, and 22% oil and 41% and 43% protein from field and greenhouse seed production, respectively. No significant differences were found in mineral concentrations except for Fe which was 229 µg/g dry mass for GV followed by 174.3 for VgD and 162 for Gm-lpa-TW75-1. Phosphate (Pi) is higher in Gm-lpa-TW75-1 as expected at 5 mg/g, followed by GV at 1.6 mg/g whereas Jack, VgD, and Taiwan75 have about 0.3 mg/g. The Gm-lpa-TW75-1 line has the lowest phytate concentration at 1.4 mg/g followed by GV with 1.8 mg/g compared to Taiwan75, VgD, and Jack with 2.5 mg/g. This work describes a high oil and protein soybean line, GV, with increased Pi and lower phytate which will increase the nutritional value for human and animal feed.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Glycine max/enzymology , Myo-Inositol-1-Phosphate Synthase/genetics , Plants, Genetically Modified/genetics , Gene Knockout Techniques , Inositol Phosphates/metabolism , Mutation/genetics , Plants, Genetically Modified/growth & development , Seeds/genetics , Seeds/growth & development , Glycine max/genetics , Glycine max/growth & development , Vernonia/enzymology , Vernonia/genetics
2.
Theor Appl Genet ; 125(7): 1413-23, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22733447

ABSTRACT

Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is an important constituent of soybean meal. Since phytic acid and its mineral salts (phytates) are almost indigestible for monogastrics, their abundance in grain food/feed causes nutritional and environmental problems; interest in breeding low phytic acid has therefore increased considerably. Based on gene mapping and the characteristics of inositol polyphosphates profile in the seeds of a soybean mutant line Gm-lpa-ZC-2, the soybean ortholog of inositol 1,3,4,5,6 pentakisphosphate (InsP(5)) 2-kinase (IPK1), which transforms InsP(5) into phytic acid, was first hypothesized as the candidate gene responsible for the low phytic acid alteration in Gm-lpa-ZC-2. One IPK1 ortholog (Glyma14g07880, GmIPK1) was then identified in the mapped region on chromosome 14. Sequencing revealed a G → A point mutation in the genomic DNA sequence and the exclusion of the entire fifth exon in the cDNA sequence of GmIPK1 in Gm-lpa-ZC-2 compared with its wild-type progenitor Zhechun No. 3. The excluded exon encodes 37 amino acids that spread across two conserved IPK1 motifs. Furthermore, complete co-segregation of low phytic acid phenotype with the G → A mutation was observed in the F(2) population of ZC-lpa x Zhexiandou No. 4 (a wild-type cultivar). Put together, the G → A point mutation affected the pre-mRNA splicing and resulted in the exclusion of the fifth exon of GmIPK1 which is expected to disrupt the GmIPK1 functionality, leading to low phytic acid level in Gm-lpa-ZC-2. Gm-lpa-ZC-2, would be a good germplasm source in low phytic acid soybean breeding.


Subject(s)
Exons/genetics , Glycine max/enzymology , Glycine max/genetics , Mutation/genetics , Phytic Acid/metabolism , RNA Splice Sites/genetics , Sequence Homology, Amino Acid , Base Sequence , Crosses, Genetic , DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Homozygote , Molecular Sequence Data , Phenotype , Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Physical Chromosome Mapping , Seeds/genetics , Seeds/metabolism , Glycine max/embryology , Transcription, Genetic
3.
J Agric Food Chem ; 57(9): 3632-8, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19323582

ABSTRACT

Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.


Subject(s)
Glycine max/genetics , Mutation , Nutritive Value , Phytic Acid/analysis , Seeds/genetics , Breeding , Fatty Acids/analysis , Isoflavones/analysis , Oligosaccharides/analysis , Plant Oils/analysis , Plant Proteins/analysis , Raffinose/analysis , Seasons , Seeds/chemistry , Glycine max/chemistry , Sucrose/analysis
4.
Theor Appl Genet ; 115(7): 945-57, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17701395

ABSTRACT

Phytic acid (PA, myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is important to the nutritional quality of soybean meal. Organic phosphorus (P) in PA is indigestible in humans and non-ruminant animals, which affects nutrition and causes P pollution of ground water from animal wastes. Two novel soybean [(Glycine max L. (Merr.)] low phytic acid (lpa) mutations were isolated and characterized. Gm-lpa-TW-1 had a phytic acid P (PA-P) reduction of 66.6% and a sixfold increase in inorganic P (Pi), and Gm-lpa-ZC-2 had a PA-P reduction of 46.3% and a 1.4-fold increase in Pi, compared with their respective non-mutant progenitor lines. The reduction of PA-P and increase of Pi in Gm-lpa-TW-1 were molar equivalent; the decrease of PA-P in Gm-lpa-ZC-2, however, was accompanied by the increase of both Pi and lower inositol phosphates. In both mutant lines, the total P content remained similar to their wild type parents. The two lpa mutations were both inherited in a single recessive gene model but were non-allelic. Sequence data and progeny analysis indicate that Gm-lpa-TW-1 lpa mutation resulted from a 2 bp deletion in the soybean D: -myo-inositol 3-phosphate synthase (MIPS1 EC 5.5.1.4) gene 1 (MIPS1). The lpa mutation in Gm-lpa-ZC-2 was mapped on LG B2, closely linked with microsatellite loci Satt416 and Satt168, at genetic distances of approximately 4.63 and approximately 9.25 cM, respectively. Thus this mutation probably represents a novel soybean lpa locus. The seed emergence rate of Gm-lpa-ZC-2 was similar to its progenitor line and was not affected by seed source and its lpa mutation. However, Gm-lpa-TW-1 had a significantly reduced field emergence when seeds were produced in a subtropic environment. Field tests of the mutants and their progenies further demonstrated that the lpa mutation in Gm-lpa-ZC-2 does not negatively affect plant yield traits. These results will advance understanding of the genetic, biochemical and molecular control of PA synthesis in soybean. The novel lpa mutation in Gm-lpa-ZC-2, together with linked simple sequence repeat (SSR) markers, will be of value for breeding productive lpa soybeans, with meal high in digestible Pi eventually to improve animal nutrition and lessen environmental pollution.


Subject(s)
Glycine max/genetics , Mutation , Phytic Acid/metabolism , Phytic Acid/chemistry , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Glycine max/chemistry , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...