Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 171: 116099, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171244

ABSTRACT

Chronic myelogenous leukemia (CML) is characterized by the constitutive activation of BCR-ABL tyrosine kinase. Imatinib was approved for CML therapy, however, BCR-ABL-dependent drug resistance, especially BCR-ABL-T315I mutation, restricts its clinical application. In this study, we reported anthraquinone lactone AS1041, a synthesized derivative of marine natural compound Aspergiolide A, showed anti-leukemia effect in vitro and in vivo by promoting cell senescence. Mechanistic study revealed the pro-senescence effect of AS1041 was dependent on oxidative stress-induced DNA damage, and the resultant activation of P53/P21 and P16INK4a/Rb. Also, AS1041 promoted ubiquitin proteasome system (UPS)-mediated BCR-ABL degradation, which also contributed to AS1041-induced senescence. In vivo, AS1041-induced senescence promoted tumor growth inhibition. In summary, the in vitro and in vivo antitumor effect of AS1041 suggests it can serve as a pro-senescence agent for alternative antileukemia therapy and imatinib-resistant cancer therapy by enhancing cellular oxidative stress and BCR-ABL degradation.


Subject(s)
Anthraquinones , Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Imatinib Mesylate/pharmacology , Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl/metabolism , Oxidative Stress , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , DNA Damage , Protein Kinase Inhibitors/pharmacology
2.
ACS Omega ; 5(44): 28889-28896, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33195942

ABSTRACT

As a compound from marine fungi, (+)-terrein showed significant anticancer activity. In this study, (+)-terrein was extracted from the marine-derived fungus and showed significant cytotoxicity against cancer cells, especially in A549 cells. To enhance its anticancer effects, redox-responsive nanocarriers based on folic acid-chitosan decorating the mesoporous silica nanoparticles were designed to control (+)-terrein target delivery into cancer cells. (+)-Terrein was loaded in the holes, and folic acid-chitosan worked as a gatekeeper by disulfide linkage controlling (+)-terrein release in the tumor microenvironment. The (+)-terrein drug delivery systems exhibited cytotoxicity toward A549 cells through induction of apoptosis. The apoptosis effect was confirmed by the increase in the expression of cleaved caspase-3, caspase-9, and PARP. Taken together, this work evaluates for the first time the (+)-terrein delivery system and provides a promising nanomedicine platform for (+)-terrein.

3.
Mar Drugs ; 15(11)2017 Nov 04.
Article in English | MEDLINE | ID: mdl-29113054

ABSTRACT

AS1041 is a novel synthesized anthraquinone lactone derivative of marine natural compound aspergiolide A (ASP-A) with new structure skeleton and marked cytotoxicity in cancer cells. To study its cytotoxicity in detail, we evaluated its activity on human K562 chronic myelogenous leukemia cells and investigated the related molecule mechanisms. AS1041 significantly inhibited the proliferation and colony formation of K562 cells. Moreover, AS1041 arrested cell cycle progression at G2/M phase in a concentration-dependent manner, and also caused concentration- and time-dependent induction of apoptosis. In addition, the molecular mechanisms investigation showed that AS1041 did not localize in the cellular nucleus and did not affect topoisomerases I or II. However, AS1041 could inactivate extracellular signal-regulated kinase (ERK) and contribute to AS1041-induced apoptosis. We concluded that AS1041 was cytotoxic to K562 leukemia cells and the cytotoxicity related to the cell cycle arrest, apoptosis induction, and ERK inhibition. These results implied that AS1041 was a novel derivative of ASP-A with significant cytotoxicity to chronic myelogenous leukemia cells and may have therapeutic potential for the treatment of cancer and leukemia.


Subject(s)
Anthraquinones/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Lactones/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Gene Expression Regulation, Enzymologic/drug effects , Humans , K562 Cells , Lactones/pharmacology , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...