Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Cells ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727294

ABSTRACT

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Subject(s)
Behavior, Animal , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/metabolism , Mitochondria/metabolism , Female , Mice , Male , Ovulation , Anxiety/metabolism , Anxiety/pathology , Antioxidants/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Blastocyst/metabolism , Cellular Senescence , Memory
2.
World J Clin Cases ; 11(16): 3802-3812, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37383116

ABSTRACT

BACKGROUND: The coaxial radiography-guided puncture technique (CR-PT) is a novel technique for endoscopic lumbar discectomy. As the X-ray beam and the puncturing needle are maintained in a parallel and coaxial direction, the X-ray beam can be used to guide the trajectory angle, facilitating the choice of the puncture site and providing real-time guidance. This puncture technique offers numerous advantages over the conventional anterior-posterior and lateral radiography-guided puncture technique (AP-PT), especially in cases of herniated lumbar discs with a hypertrophied transverse process or articular process, high iliac crest, and narrowed intervertebral foramen. AIM: To confirm whether CR-PT is a superior approach to percutaneous transforaminal endoscopic lumbar discectomy compared to AP-PT. METHODS: In this parallel, controlled, randomized clinical trial, herniated lumbar disc patients appointed to receive percutaneous endoscopic lumbar discectomy treatment were recruited from the Pain Management Department of the Affiliated Hospital of Xuzhou Medical University and Nantong Hospital of Traditional Chinese Medicine. Sixty-five participants were enrolled and divided into either a CR-PT group or an AP-PT group. The CR-PT group underwent CR-PT, and the AP-PT group underwent AP-PT. The number of fluoroscopies during puncturing, puncture duration (min), surgery duration (min), VAS score during puncturing, and puncture success rate were recorded. RESULTS: Sixty-five participants were included, with 31 participants in the CR-PT group and 34 in the AP-PT group. One participant in the AP-PT group dropped out due to unsuccessful puncturing. The number of fluoroscopies [median (P25, P75)] was 12 (11, 14) in the CR-PT group vs 16 (12, 23) in the AP-PT group, while the puncture duration (mean ± SD) was 20.42 ± 5.78 vs 25.06 ± 5.46, respectively. The VAS score was 3 (2, 4) in the CR-PT group vs 3 (3, 4) in the AP-PT group. Further subgroup analysis was performed, considering only the participants with L5/S1 segment herniation: 9 patients underwent CR-PT, and 9 underwent AP-PT. The number of fluoroscopies was 11.56 ± 0.88 vs 25.22 ± 5.33; the puncture duration was 13.89 ± 1.45 vs 28.89 ± 3.76; the surgery duration was 105 (99.5, 120) vs 149 (125, 157.5); and the VAS score was 2.11 ± 0.93 vs 3.89 ± 0.6, respectively. All the above outcomes demonstrated statistical significance (P < 0.05), favoring the CR-PT treatment. CONCLUSION: CR-PT is a novel and effective technique. As opposed to conventional AP-PT, this technique significantly improves puncture accuracy, shortens puncture time and operation time, and reduces pain intensity during puncturing.

3.
J Reprod Dev ; 69(4): 185-191, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37245986

ABSTRACT

The mechanisms underlying postovulatory oocyte aging (POA) remain largely unknown. The expression of the calcium-sensing receptor (CaSR) in mouse oocytes and its role in POA need to be explored. Our objective was to observe CaSR expression and its role in the susceptibility to activating stimuli (STAS) in POA mouse oocytes. The results showed that, although none of the newly ovulated oocytes were activated, 40% and 94% of the oocytes recovered 19 and 25 h after human chorionic gonadotropin (hCG) injection were activated, respectively, after ethanol treatment. The level of the CaSR functional dimer protein in oocytes increased significantly from 13 to 25 h post hCG. Thus, the CaSR functional dimer level was positively correlated with the STAS of POA oocytes. Aging in vitro with a CaSR antagonist suppressed the elevation of STAS, and cytoplasmic calcium in oocytes recovered 19 h post hCG, whereas aging with a CaSR agonist increased STAS, and cytoplasmic calcium of oocytes recovered 13 h post hCG. Furthermore, the CaSR was more important than the Na-Ca2+ exchanger in regulating oocyte STAS, and T- and L-type calcium channels were inactive in aging oocytes. We conclude that the CaSR is involved in regulating STAS in POA mouse oocytes, and that it is more important than the other calcium channels tested in this connection.


Subject(s)
Calcium , Receptors, Calcium-Sensing , Humans , Animals , Mice , Oocytes , Ovulation , Aging , Polymers
5.
Front Cell Dev Biol ; 10: 874374, 2022.
Article in English | MEDLINE | ID: mdl-35433692

ABSTRACT

Most studies on mechanisms by which prenatal stress affects offspring behavior were conducted during late pregnancy using in vivo models; studies on the effect of preimplantation stress are rare. In vivo models do not allow accurate specification of the roles of different hormones and cells within the complicated living organism, and cannot verify whether hormones act directly on embryos or indirectly to alter progeny behavior. Furthermore, the number of anxiety-related miRNAs identified are limited. This study showed that both mouse embryculture with corticosterone (ECC) and maternal preimplantation restraint stress (PIRS) increased anxiety-like behavior (ALB) while decreasing hippocampal expression of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) in offspring. ECC/PIRS downregulated GR and BDNF expression by increasing miR-211-5p expression via promoter demethylation of its host gene Trpm1, and this epigenetic cell fate determination was exclusively perpetuated during development into mature hippocampus. Transfection with miR-211-5p mimic/inhibitor in cultured hippocampal cell lines confirmed that miR-211-5p downregulated Gr and Bdnf. Intrahippocampal injection of miR-211-5p agomir/antagomir validated that miR-211-5p dose-dependently increased ALB while decreasing hippocampal GR/BDNF expression. In conclusion, preimplantation exposure to glucocorticoids increased ALB by upregulating miR-211-5p via Trpm1 demethylation, and miR-211-5p may be used as therapeutic targets and biomarkers for anxiety-related diseases.

6.
Biol Reprod ; 106(5): 900-909, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35084021

ABSTRACT

Oocyte aneuploidy is caused mainly by chromosome nondisjunction and/or unbalanced sister chromatid pre-division. Although studies in somatic cells have shown that topoisomerase II (TOP2) plays important roles in chromosome condensation and timely separation of centromeres, little is known about its role during oocyte meiosis. Furthermore, because VP-16, which is a TOP2 inhibitor and induces DNA double strand breaks, is often used for ovarian cancer chemotherapy, its effects on oocytes must be studied for ovarian cancer patients to recover ovarian function following chemotherapy. This study showed that inhibiting TOP2 with either ICRF-193 or VP-16 during meiosis I impaired chromatin condensation, chromosome alignment, TOP2α localization, and caused metaphase I (MI) arrest and first polar body (PB1) abscission failure. Inhibiting or neutralizing either spindle assembly checkpoint (SAC), Aurora B or maturation-promoting factor (MPF) significantly abolished the effect of ICRF-193 or VP-16 on MI arrest. Treatment with ICRF-193 or VP-16 significantly activated MPF and SAC but the effect disappeared when Aurora B was inhibited. Most of the oocytes matured in the presence of ICRF-193 or VP-16 were arrested at MI, and only 11-27% showed PB1 protrusion. Furthermore, most of the PB1 protrusions formed in the presence of ICRF-193 or VP-16 were retracted after further culture for 7 h. In conclusion, TOP2 dysfunction causes MI arrest by activating Aurora B, SAC, and MPF, and it prevents PB1 abscission by promoting chromatin bridges.


Subject(s)
Aurora Kinase B , M Phase Cell Cycle Checkpoints , Maturation-Promoting Factor , Animals , Aurora Kinase B/metabolism , Chromatin , DNA Topoisomerases, Type II/genetics , Etoposide , Female , Maturation-Promoting Factor/metabolism , Meiosis , Metaphase , Mice , Oocytes , Polar Bodies , Spindle Apparatus , Topoisomerase II Inhibitors
7.
J Asian Nat Prod Res ; 24(7): 617-623, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34304653

ABSTRACT

A chemical investigation on the roots of Aconitum episcopale afforded three undescribed aconitine-type C19-diterpenoid alkaloids, episcopalines A-C (1-3). The structures of the new compounds were elucidated by spectroscopic analysis (NMR, IR, UV, and MS). The isolated alkaloids were tested in vivo for their antinociceptive properties. As a result, episcopaline B (2) showed potent antinociceptive effect and its ID50 value (55.0 µmol/kg) was 2-fold less than those of the positive control drugs aspirin and acetaminophen.


Subject(s)
Aconitum , Alkaloids , Diterpenes , Aconitum/chemistry , Alkaloids/chemistry , Analgesics/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Molecular Structure , Plant Roots/chemistry
8.
Mol Hum Reprod ; 28(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34919712

ABSTRACT

Although microRNAs (miRNAs) expressed in cumulus cells (CCs) may be used to select competent oocytes/embryos, only a limited number of such miRNAs has been reported. To identify more miRNAs that regulate cumulus expansion (CE) and CC apoptosis, we first established that mouse cumulus-oocyte complexes (COCs) cultured in expansion-supporting medium supported full CE while undergoing mild apoptosis, whereas mouse oocytectomized COCs (OOXs) cultured in apoptosis-triggering medium underwent severe apoptosis while supporting no CE. RNA- and miRNA-sequencing and bioinformatics using CCs from these cultured COCs/OOXs identified candidate apoptosis- and/or CE-regulating miRNAs. Transfection of COCs/OOXs with miRNA mimic or inhibitor validated that miR-212-5p and 149-5p promoted CE by facilitating Has2 expression; miR-31-5p and 27a-3p promoted CE by increasing both Has2 and Ptx3 expression; and miR-351-5p and 503-5p inhibited CE by suppressing Ptx3 expression. Furthermore, miR-212-5p, 149-5p and Nov798 inhibited CC apoptosis, involving both Bcl2/Bax and Fas signaling. Analysis using in vivo matured COCs further verified the above apoptosis- and/or CE-regulating miRNAs, except for miR-149-5p. In conclusion, this study identified and validated new CE- and apoptosis-regulating miRNAs in CCs, which could be used as biomarkers to select competent oocytes/embryos and for elucidating how the oocyte-derived factors regulate CE and CC apoptosis.


Subject(s)
Cumulus Cells , MicroRNAs , Animals , Apoptosis/genetics , Cumulus Cells/metabolism , Female , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/metabolism , Signal Transduction
9.
World J Clin Cases ; 9(28): 8545-8551, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34754866

ABSTRACT

BACKGROUND: Lumbar facet joint syndrome (LFJS) is a pain condition arising from lumbar facet joint diseases. Treatments of LFJS includes patient education, oral medication, bed rest, physical therapy, and procedural interventions. For some refractory cases that fail conservative therapies, dorsal ramus medial brunch radiofrequency ablation is warranted. However, as nerve fibers can regenerate, their efficacy is impermanent, and the recurrence rate is relatively high. Considering synovial impingement is a paramount pathogenesis of LFJS, in this case, we removed the culprit hyperplastic articular capsule and the articular process partially through a spinal endoscope. As the culprit hyperplastic joint capsule was excised, it is supposed to generate more prolonged efficacy and a lower recurrence rate than radiofrequency treatment. CASE SUMMARY: A 40-year-old female patient was diagnosed with LFJS. She complained of low back pain and right buttock pain for half a year. The patient was placed in the prone position. After disinfection and draping, a 25-cm 18-gauge needle was inserted into the dorsal surface of the right L5 articular process. Subsequently, a guidewire, dilating tubes, and a working cannula was inserted successively. The spinal endoscope was positioned in the working cannula. Under the endoscope, the microvascular tissue, muscle tissue attached on the L5 inferior articular process and S1 superior articular process, as well as the capsule and minor portion of the inferior articular process were removed. After the joint space was clear and no bleeding points existed, the endoscope and working cannula were shifted, and the incision was sutured. After treatment, the symptoms were completely relieved. The patient was pain-free during the follow-up period of 6 mo. CONCLUSION: The endoscopic partial joint capsule and articular process excision is an effective procedure for LFJS, especially for cases caused by synovial impingement.

10.
Theriogenology ; 173: 211-220, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34399385

ABSTRACT

Although it is known that stresses on females damage oocytes with increased production of stress hormones, whether corticotrophin-releasing hormone (CRH) or adrenocorticotropic hormone (ACTH) harm oocytes directly are largely unknown. We demonstrated that CRH exposure during in vitro maturation impaired competence of both pig and mouse cumulus-oocyte-complexes (COCs), and it impaired competence and induced apoptosis in pig cumulus-denuded oocytes (DOs) but not in mouse DOs. CRH receptor 1 was expressed in pig DOs and in cumulus cells (CCs) of both species but not in mouse DOs. In the presence of CRH, whereas mouse CCs underwent apoptosis, pig CCs did not. While pig CCs did, mouse CCs did not express CRH-binding protein. ACTH did not affect competence of either pig or mouse COCs or DOs although they all expressed ACTH receptor. Both pig and mouse CCs expressed steroidogenic acute regulatory protein (StAR), and ACTH enhanced their progesterone production while alleviating their apoptosis. Neither pig nor mouse DOs expressed StAR, but ACTH inhibited maturation-promoting factor and decelerated meiotic progression of DOs suggesting activation of protein kinase A (PKA). In conclusion, CRH impaired pig and mouse oocyte competence by interacting with CRH receptor and inducing CCs apoptosis, respectively. ACTH activated PKA in both DOs and CCs although it showed no effect on oocyte competence.


Subject(s)
Adrenocorticotropic Hormone , Corticotropin-Releasing Hormone , Adrenocorticotropic Hormone/pharmacology , Animals , Coculture Techniques/veterinary , Cumulus Cells , Female , In Vitro Oocyte Maturation Techniques/veterinary , Mice , Oocytes , Swine
11.
Sci Rep ; 11(1): 7952, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846458

ABSTRACT

Pathophysiological mechanisms for depression/anxiety are largely unknown. Evidence for transgenerational transmission of acquired epigenetic marks remains limited. We bred unstressed (US) female mice with adolescently restraint-stressed (RS), social instability-stressed (SI) or US males to produce RS, SI and control F1 offspring, respectively. Compared to controls, while paternal RS decreased anxiety-like behavior (ALB) in both female and male offspring, paternal SI increased ALB only in female offspring. Next-generation sequencing and bioinformatics using RS and SI female offspring identified 5 candidate anxiety-transmitting (CAT) genes; each showed a consistent pattern of DNA methylation from F0 spermatozoa through F1 blastocysts to fetal and adult hippocampi. Further analyses validated 4 CAT genes, demonstrated that paternal SI caused ALB differences between male and female offspring through modifying the CAT genes, and indicated a strong correlation between inflammation and ALB pathogenesis and an important function for intronic DNA methylation in regulating ALB-related genes. In conclusion, this study identified important CAT genes and suggested the possibility that stresses on males might alter offspring's ALB by modifying sperm DNA methylation.


Subject(s)
Anxiety/genetics , Behavior, Animal/physiology , High-Throughput Nucleotide Sequencing , Restraint, Physical , Stress, Psychological/genetics , Animals , DNA Methylation/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Hippocampus/metabolism , Male , Mice , Phenotype , Protein Interaction Maps/genetics , Reproducibility of Results , Social Behavior , Spermatozoa/metabolism
12.
J Reprod Dev ; 67(2): 115-122, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33597332

ABSTRACT

We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleoli (NSN) and SN oocytes from prepubertal and adult mice following maturation with or without MAM. The results demonstrated that MAM with roscovitine significantly improved the developmental potential of adult SN and prepubertal NSN oocytes, but had no effect on that of prepubertal SN oocytes. Without MAM, while 40% of the 2-cell embryos derived from prepubertal SN oocytes developed into 4-cell embryos, none of the 2-cell embryos derived from prepubertal NSN oocytes did, and while 42% of the 4-cell embryos derived from adult SN oocytes developed into blastocysts, only 1% of the 4-cell embryos derived from prepubertal SN oocytes developed into blastocysts. Furthermore, MAM with roscovitine, SN configuration, and female sexual maturity significantly increased the mRNA levels of competence-beneficial genes and decreased those of competence-detrimental genes. In conclusion, our results suggest that MAM with roscovitine, SN chromatin configuration, and female sexual maturity improve oocyte competence by regulating the expression of competence-related genes, suggesting that Oct4, Stella, Mater, Zar1, Mapk8, and Bcl2 are oocyte competence-beneficial genes, whereas Foxj2, Ship1, and Bax are competence-detrimental genes.


Subject(s)
Cell Nucleolus/metabolism , Meiosis/drug effects , Oocytes/cytology , Roscovitine/pharmacology , Animals , Blastocyst , Chromatin/metabolism , Coculture Techniques , Cumulus Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , In Vitro Oocyte Maturation Techniques/methods , Mice , Ovarian Follicle/metabolism , Transcription, Genetic
13.
J Reprod Dev ; 67(1): 43-51, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33310974

ABSTRACT

It has been reported in recent studies that restraint stress on pregnant mice during the preimplantation stage elevated corticotrophin-releasing hormone (CRH) and glucocorticoid levels in the serum and oviducts; furthermore, CRH and corticosterone (CORT) impacted preimplantation embryos indirectly by triggering the apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. However, it remains unclear whether TNF-α signaling is involved in CRH- and/or glucocorticoid-induced apoptosis of OECs. In the present study, it was shown that culture with either CRH or CORT induced significant apoptosis of OECs. The culture of OECs with CRH augmented both FasL expression and TNF-α expression. However, culture with CORT increased FasL, but decreased TNF-α, expression significantly. Although knocking down/knocking out FasL expression in OECs significantly ameliorated the proapoptotic effects of both CRH and CORT, knocking down/knocking out TNF-α expression relieved only the proapoptotic effect of CRH but not that of CORT. Taken together, our results demonstrated that CRH-induced OEC apoptosis involved both Fas signaling and TNF-α signaling. Conversely, CORT-induced OEC apoptosis involved only the Fas, but not the TNF-α, signaling pathway. The data obtained are crucial for our understanding of the mechanisms by which various categories of stress imposed on pregnant females impair embryo development, as well as for the development of measures to protect the embryo from the adverse effects of stress.


Subject(s)
Apoptosis/drug effects , Corticosterone/pharmacology , Epithelial Cells/drug effects , Oviducts/drug effects , Animals , Cells, Cultured , Epithelial Cells/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Oviducts/cytology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics
14.
Reproduction ; 160(1): 129-140, 2020 07.
Article in English | MEDLINE | ID: mdl-32485668

ABSTRACT

Mechanisms by which female stress and particularly glucocorticoids impair oocyte competence are largely unclear. Although one study demonstrated that glucocorticoids triggered apoptosis in ovarian cells and oocytes by activating the FasL/Fas system, other studies suggested that they might induce apoptosis through activating other signaling pathways as well. In this study, both in vivo and in vitro experiments were conducted to test the hypothesis that glucocorticoids might trigger apoptosis in oocytes and ovarian cells through activating the TNF-α system. The results showed that cortisol injection of female mice (1.) impaired oocyte developmental potential and mitochondrial membrane potential with increased oxidative stress; (2.) induced apoptosis in mural granulosa cells (MGCs) with increased oxidative stress in the ovary; and (3.) activated the TNF-α system in both ovaries and oocytes. Culture with corticosterone induced apoptosis and activated the TNF-α system in MGCs. Knockdown or knockout of TNF-α significantly ameliorated the pro-apoptotic effects of glucocorticoids on oocytes and MGCs. However, culture with corticosterone downregulated TNF-α expression significantly in oviductal epithelial cells. Together, the results demonstrated that glucocorticoids impaired oocyte competence and triggered apoptosis in ovarian cells through activating the TNF-α system and that the effect of glucocorticoids on TNF-α expression might vary between cell types.


Subject(s)
Apoptosis , Glucocorticoids/pharmacology , Granulosa Cells/pathology , Oocytes/pathology , Ovary/pathology , Tumor Necrosis Factor-alpha/physiology , Animals , Female , Granulosa Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oocytes/metabolism , Oogenesis , Ovary/metabolism
15.
Reprod Fertil Dev ; 32(9): 862-872, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32527376

ABSTRACT

Studies have observed that restraint stress (RS) and the associated elevation in corticotrophin-releasing hormone (CRH) impair oocyte competence by triggering apoptosis of ovarian cells but the underlying mechanisms are largely unclear. Although one study demonstrated that RS and CRH elevation triggered apoptosis in ovarian cells and oocytes via activating Fas/FasL signalling, other studies suggested that RS might damage cells by activating other pathways as well as Fas signalling. The objective of this study was to test whether RS and CRH elevation impairs oocytes by activating tumour necrosis factor α (TNF-α) signalling. Our invivo experiments showed that RS applied during oocyte prematuration significantly increased expression of TNF-α and its receptor (TNFR1) while inducing apoptosis in both oocytes and mural granulosa cells (MGCs). Invitro treatment of MGCs with CRH significantly increased their apoptotic percentages and levels of TNF-α and TNFR1 expression. Invitro knockdown by interfering RNA, invivo knockout of the TNF-α gene or injection of TNF-α antagonist etanercept significantly relieved the adverse effects of RS and CRH on apoptosis of MGCs and/or the developmental potential and apoptosis of oocytes. The results suggest that RS and CRH elevation in females impair oocyte competence through activating TNF-α signalling and that a TNF-α antagonist might be adopted to ameliorate the adverse effects of psychological stress on oocytes.


Subject(s)
Apoptosis , Corticotropin-Releasing Hormone/metabolism , Oocytes/metabolism , Restraint, Physical , Stress, Psychological/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Disease Models, Animal , Embryo Culture Techniques , Etanercept/pharmacology , Female , Fertilization in Vitro , Mice, Inbred C57BL , Mice, Knockout , Oocytes/drug effects , Oocytes/pathology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Stress, Psychological/etiology , Stress, Psychological/genetics , Stress, Psychological/pathology , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics , Up-Regulation
16.
Sci Rep ; 10(1): 2782, 2020 02 17.
Article in English | MEDLINE | ID: mdl-32066834

ABSTRACT

The developmental competence of IVM porcine oocytes is still low compared with that in their in vivo counterparts. Although many studies reported effects of glucose metabolism (GM) on oocyte nuclear maturation, few reported on cytoplasmic maturation. Previous studies could not differentiate whether GM of cumulus cells (CCs) or that of cumulus-denuded oocytes (DOs) supported oocyte maturation. Furthermore, species differences in oocyte GM are largely unknown. Our aim was to address these issues by using enzyme activity inhibitors, RNAi gene silencing and special media that could support nuclear but not cytoplasmic maturation when GM was inhibited. The results showed that GM in CCs promoted pig oocyte maturation by releasing metabolites from both pentose phosphate pathway and glycolysis. Both pyruvate and lactate were transferred into pig DOs by monocarboxylate transporter and pyruvate was further delivered into mitochondria by mitochondrial pyruvate carrier in both pig DOs and CCs. In both pig DOs and CCs, pyruvate and lactate were utilized through mitochondrial electron transport and LDH-catalyzed oxidation to pyruvate, respectively. Pig and mouse DOs differed in their CC dependency for glucose, pyruvate and lactate utilization. While mouse DOs could not, pig DOs could use the lactate-derived pyruvate.


Subject(s)
Cumulus Cells/metabolism , Glucose/metabolism , In Vitro Oocyte Maturation Techniques/methods , Oocytes/growth & development , Animals , Cell Nucleus/metabolism , Coculture Techniques , Cytoplasm/metabolism , Female , Glycolysis/genetics , Mice , Mitochondria/metabolism , Oocytes/metabolism , Oxidation-Reduction , Pentose Phosphate Pathway/genetics , Pyruvic Acid/metabolism , Swine
17.
Zygote ; : 1-10, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31933449

ABSTRACT

Studies have indicated that psychological stress impairs human fertility and that various stressors can induce apoptosis of testicular cells. However, the mechanisms by which psychological stress on males reduces semen quality and stressors induce apoptosis in testicular cells are largely unclear. Using a psychological (restraint) stress mouse model, we tested whether male psychological stress triggers apoptosis of spermatozoa and spermatogenic cells through activating tumour necrosis factor (TNF)-α signalling. Wild-type or TNF-α-/- male mice were restrained for 48 h before examination for apoptosis and expression of TNF-α and TNF receptor 1 (TNFR1) in spermatozoa, epididymis, seminiferous tubules and spermatogenic cells. The results showed that male restraint significantly decreased fertilization rate and mitochondrial membrane potential, while increasing levels of malondialdehyde, active caspase-3, TNF-α and TNFR1 in spermatozoa. Male restraint also increased apoptosis and expression of TNF-α and TNFR1 in caudae epididymides, seminiferous tubules and spermatogenic cells. Sperm quality was also significantly impaired when spermatozoa were recovered 35 days after male restraint. The restraint-induced damage to spermatozoa, epididymis and seminiferous tubules was significantly ameliorated in TNF-α-/- mice. Furthermore, incubation with soluble TNF-α significantly reduced sperm motility and fertilizing potential. Taken together, the results demonstrated that male psychological stress induces apoptosis in spermatozoa and spermatogenic cells through activating the TNF-α system and that the stress-induced apoptosis in spermatogenic cells can be translated into impaired quality in future spermatozoa.

18.
Biol Reprod ; 101(1): 235-247, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31066896

ABSTRACT

The mechanisms by which psychological stress impairs semen quality are largely unknown. By using a restraint-stressed mouse model, we studied the role of the FasL/Fas system in psychological stress-induced apoptosis of spermatozoa and spermatogenic cells. Male mice were restrained for 48 h before examination for sperm fertilizing potential and for apoptosis and FasL/Fas expression in spermatozoa, spermatogenetic cells/seminiferous tubules, and caudae epididymides. The results showed that the male restraint reduced motility, fertilization rates, and mitochondrial membrane potential while increasing apoptosis and Fas expression in spermatozoa. Restraint also facilitated apoptosis and FasL/Fas expression in spermatogenic cells/seminiferous tubules and caudae epididymides. The restraint-induced apoptosis in spermatozoa and spermatogenic cells was significantly ameliorated in gld mice that harbor a loss-of-function mutation in FasL. However, incubation with FasL did not affect sperm motility and apoptosis, while incubation with tumor necrosis factor (TNF)-α did. The epididymis of the gld mice produced significantly less TNF-α and TNF-related apoptosis-inducing ligand (TRAIL) than that of wild-type mice did after male restraint. Thus, the results confirmed that the FasL/Fas system played an important role in the psychological stress-induced apoptosis of spermatozoa and spermatogenic cells and that FasL triggered sperm apoptosis in epididymis dependently through promoting TNF-α and TRAIL secretion.


Subject(s)
Apoptosis/physiology , Fas Ligand Protein/metabolism , Restraint, Physical/physiology , Spermatozoa/physiology , Stress, Psychological , fas Receptor/metabolism , Animals , Female , Fertilization in Vitro , Male , Mice , Mice, Inbred C57BL , Restraint, Physical/psychology , Semen Analysis , Signal Transduction/physiology , Sperm Motility/physiology , Spermatogenesis/physiology , Stress, Psychological/pathology , Stress, Psychological/physiopathology
19.
J Cell Physiol ; 233(9): 6952-6964, 2018 09.
Article in English | MEDLINE | ID: mdl-29336483

ABSTRACT

In previous studies on glucose metabolism during in vitro maturation, intact cumulus-oocyte complexes (COCs) were treated with enzyme inhibitors/activators. Because inhibitors/activators may have non-specificity and/or toxicity, and culture of COCs cannot differentiate whether glucose metabolism of cumulus cells (CCs) or that of the oocyte supports oocyte maturation, results from the previous studies must be verified by silencing genes in either CCs or cumulus-denuded oocytes (DOs). In this study, RNAi was adopted to specify the effects of glucose metabolism in CCs or DOs on oocyte maturation. Although silencing either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or glucose-6-phosphate dehydrogenase (G6PD) genes in CCs significantly decreased competence of the cocultured DOs, silencing G6PD impaired competence to a greater extent. While silencing G6PD or GAPDH of CCs decreased glutathione and ATP contents of cocultured DOs to similar extents, silencing G6PD increased oxidative stress as well. Analysis on metabolite contents and oxidative stress index and culture of DOs in medium conditioned with gene-silenced CCs indicated that CCs supported oocyte maturation by releasing glucose metabolites. Silencing mitochondrial pyruvate carrier 1 or NADH dehydrogenase (ubiquintone) flavoprotein 1 of DOs significantly impaired their maturation. The results have unequivocally confirmed that CCs promote oocyte maturation by releasing glucose metabolites from both pentose phosphate pathway (PPP) and glycolysis. Pyruvate is transferred into DOs by mitochondrial pyruvate carrier (MPC) and utilized through mitochondrial electron transport to support maturation.


Subject(s)
Glucose/metabolism , In Vitro Oocyte Maturation Techniques , Oocytes/cytology , Oocytes/metabolism , RNA Interference , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cumulus Cells/cytology , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Down-Regulation/drug effects , Electron Transport Complex I/metabolism , Energy Metabolism/drug effects , Glucosephosphate Dehydrogenase/metabolism , Glutathione/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycolysis/drug effects , Mice , NADP/metabolism , Oocytes/drug effects , Oxidation-Reduction , Pentose Phosphate Pathway/drug effects , Proprotein Convertase 1/metabolism , Pyruvic Acid/metabolism , Reactive Oxygen Species/metabolism
20.
Biol Reprod ; 98(2): 218-226, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29267849

ABSTRACT

Mechanisms for postovulatory aging (POA) of oocytes and for spontaneous activation (SA) of rat oocytes are largely unknown. Expression of calcium-sensing receptor (CaSR) in rat oocytes and its role in POA remain unexplored. In this study, expression of CaSR in rat oocytes aging for different times was detected by immunofluorescence microscopy, and western blotting and the role of CaSR in POA was determined by observing the effects of regulating its activity on SA susceptibility and cytoplasmic calcium levels. The results showed that CaSR was expressed in rat oocytes. Oocytes recovered 19 h post human chorionic gonadotropin (hCG) injection were more susceptible to SA and expressed more functional CaSR than oocytes recovered 13 h after hCG injection, although both expressed the same level of total CaSR protein. Treatment with CaSR antagonist significantly suppressed cytoplasmic calcium elevation and SA of oocytes. Activation of Na-Ca2+ exchanger with NaCl inhibited SA to a greater extent than suppression of CaSR with NPS-2143, suggesting that calcium sources other than CaSR-controlled channels contributed to the elevation of cytoplasmic calcium. Treatment with T- or L-type calcium channel blockers significantly reduced SA. Suppression of all calcium channels tested reduced SA to minimum. It is concluded that the level of CaSR functional dimer protein, but not that of the total CaSR protein, was positively correlated with the SA susceptibility during POA of rat oocytes confirming that CaSR is involved in POA regulation. Blocking multiple calcium channels might be a better choice for efficient control of SA in rat oocytes.


Subject(s)
Oocytes/metabolism , Ovulation/metabolism , Receptors, Calcium-Sensing/metabolism , Animals , Chorionic Gonadotropin/pharmacology , Female , Naphthalenes/pharmacology , Oocytes/drug effects , Ovulation/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Calcium-Sensing/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...