Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(18): 20176-20184, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737044

ABSTRACT

The presence of salinity affects the accuracy of existing correlations used in the equation of state. Moreover, the variation of salinity is often ignored in the systematic analysis of the phase diagram, resulting in a large error in the final calculation result. It is obvious that the conventional phase equilibrium calculation is not applicable in a high-salinity reservoir. By introducing the hydrocarbon-brine binary interaction coefficient and α-function, combined with the definition of salinity, and considering the variation of salinity under different pressure and temperature conditions, a more perfect phase equilibrium calculation model was established. The complete phase diagram was drawn, and the calculation results of salinity distribution are obtained. The effect of the mole percentage of water and salt content on the phase behavior was simulated. Finally, the phase distribution simulation is carried out based on the measured data. The phase state and salinity variation law of a high-salinity reservoir are obtained. According to the fluid composition of different periods, the real phase state of the high-salinity reservoir can be monitored in real time. It can provide a theoretical basis for the gas reservoir development and the dynamic evaluation of gas storage injection and production with a hydrocarbon-brine two-phase system.

2.
Microorganisms ; 10(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36014066

ABSTRACT

Lycium ruthenicum, a halophytic shrub, has been used to remediate saline soils in northwest China. However, little is known about its root-associated microbial community and how it may be affected by the plant's growth cycle. In this study, we investigate the microbial community structure of L. ruthenicum by examining three root compartments (rhizosphere, rhizoplane, and endosphere) during four growth stages (vegetative, flowering, fruiting, and senescence). The microbial community diversity and composition were determined by Illumina MiSeq sequencing of the 16S V3-V4 and 18S ITS regions. Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most dominant fungal phyla. The alpha diversity of the bacterial communities was highest in the rhizosphere and decreased from the rhizosphere to the endosphere compartments; the fungal communities did not show a consistent trend. The rhizosphere, rhizoplane, and endosphere had distinct bacterial community structures among the three root compartments and from the bulk soil. Additionally, PERMANOVA indicated that the effect of rhizocompartments explained a large proportion of the total community variation. Differential and biomarker analysis not only revealed that each compartment had unique biomarkers and was enriched for specific bacteria, but also that the biomarkers changed with the plant growth cycle. Fungi were also affected by the rhizocompartment, but to a much less so than bacteria, with significant differences in the community composition along the root compartments observed only during the vegetative and flowering stages. Instead, the growth stages appear to account for most of the fungal community variation as demonstrated by PCoA and NMDS, and supported by differential and biomarker analysis, which revealed that the fungal community composition in the rhizosphere and endosphere were dynamic in response to the growth stage. Many enriched OTUs or biomarkers that were identified in the root compartments were potentially beneficial to the plant, meanwhile, some harmful OTUs were excluded from the root, implying that the host plant can select for beneficial bacteria and fungi, which can promote plant growth or increase salt tolerance. In conclusion, the root compartment and growth stage were both determinant factors in structuring the microbial communities of L. ruthenicum, but the effects were different in bacteria and fungi, suggesting that bacterial and fungal community structures respond differently to these growth factors.

3.
Foods ; 11(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35564052

ABSTRACT

"Fo Tiao Qiang" is a famous dish with Chinese characteristics. It is delicious, rich in materials, and high in nutritional value. Through physical and chemical analysis, electronic tongue, gas chromatography-ion mobility spectroscopy, and other technologies, the present study explored the quality characteristics and flavor differences of Fo Tiao Qiang by using different thawing methods (natural thawing, ultrasonic thawing, microwave thawing, and water bath thawing). The results show that the protein content was slightly higher in Fo Tiao Qiang with ultrasonic thawing than others. The fat content of the microwave-thawed Fo Tiao Qiang was significantly lower than the other three kinds of samples. After ultrasonic thawing, the number of free amino acids in the samples were the highest and the umami taste was the best. Compared with natural thawing, most of the flavor substances decreased in ultrasonic thawing, microwave thawing, and water bath thawing. However, several substances increased, such as alpha-terpineol, beta-phenylethyl alcohol, phenylacetaldehyde, cis-rose oxide, isobutyl acetate, and 2-3-pentanedione. This study revealed the changing laws of different thawing methods on the quality characteristics and flavor characteristics of Fo Tiao Qiang. It provides theoretical guidance for the industrial production and quality control of Fo Tiao Qiang.

SELECTION OF CITATIONS
SEARCH DETAIL
...