Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37503848

ABSTRACT

Thermoelectric transport properties of Janus monolayers M2P2S3Se3 (M = Zn and Cd) are investigated by the first-principles based transport theory. The Zn2P2S3Se3 and Cd2P2S3Se3 monolayers are indirect-gap semiconductors. The high polarizability of M-Se/S bonds in the MS3Se3 distorted octahedrons leads to anharmonic phonon behavior, which produces an intrinsic lattice thermal conductivity (κl) as low as 1.06 and 1.99 W m-1 K-1 at 300 K for Zn2P2S3Se3 and Cd2P2S3Se3 monolayers, respectively. The lower κl of the Zn2P2S3Se3 monolayer is mainly attributed to more pronounced flat modes of the phonon dispersion in a frequency range of 1-1.7 THz caused by the softer Zn-Se/S bonds. The polar optical phonon scattering of carriers surprisingly plays a dominant role in carrier transport of both the monolayers, which greatly suppresses the electrical conductivity and thereby the power factor by about an order of magnitude. The predicted figure of merit (zT) increases monotonically with the temperature at the optimal carrier density, and at the operating temperature of 1200 K, it reaches an optimal value of 0.86 at an optimal electron density of ∼1.5×1013 cm-2 for the n-type Zn2P2S3Se3 monolayer and 0.30 at an optimal electron density of ∼7×1012 cm-2 for the n-type Cd2P2S3Se3 monolayer.

2.
Chemphyschem ; 17(4): 489-99, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26748542

ABSTRACT

Monodoping with Mo, Cr, and N atoms, and codoping with Mo-N and Cr-N atom pairs, are utilized to adjust the band structure of NaNbO3 , so that NaNbO3 can effectively make use of visible light for the photocatalytic decomposition of water into hydrogen and oxygen, as determined by using the hybrid density functional. Codoping is energetically favorable compared with the corresponding monodoping, due to strong Coulombic interactions between the dopants and other atoms, and the effective band gap and stability for codoped systems increase with decreasing dopant concentration and the distance between dopants. The molybdenum, chromium, and nitrogen monodoped systems, as well as chromium-nitrogen codoped systems, are unsuitable for the photocatalytic decomposition of water by using visible light, because defects introduced by monodoping or the presence of unoccupied states above the Fermi level, which promotes electron-hole recombination processes, suppress their photocatalytic performance. The Mo-N codoped NaNbO3 sample is a promising photocatalyst for the decomposition of water by using visible light because Mo-N codoping can reduce the band gap to a suitable value with respect to the water redox level without introducing unoccupied states.

SELECTION OF CITATIONS
SEARCH DETAIL
...