Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1728: 464986, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38797137

ABSTRACT

In this study, a novel at-line nanofractionation platform was established for screening SARS-CoV-2 fusion inhibitors from natural products for the first time by combining HPLC-MS/MS with high-throughput fluorescence polarization (FP) bioassay. A time-course FP bioassay in 384 well-plates was conducted in parallel with MS/MS to simultaneously obtain chemical and biological information of potential fusion inhibitors in Lonicerae Japonicae Flos (LJF) and Lianhua Qingwen capsules (LHQW). Semi-preparative liquid chromatography and orthogonal HPLC separation were employed to enrich and better identify the co-eluted components. After comprehensive evaluation and validation, 28 potential SARS-CoV-2 fusion inhibitors were screened out and identified. Several compounds at low micromolar activity were validated by in vitro inhibitory assay, molecular docking, cytotoxicity test, and pseudovirus assay. Moreover, four potential dual-target inhibitors against influenza and COVID-19 were discovered from LJF using this method, offering novel insights for the development of future pharmaceuticals targeting epidemic respiratory diseases.


Subject(s)
Antiviral Agents , Fluorescence Polarization , Molecular Docking Simulation , SARS-CoV-2 , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , SARS-CoV-2/drug effects , Tandem Mass Spectrometry/methods , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/analysis , Humans , Fluorescence Polarization/methods , High-Throughput Screening Assays/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Lonicera/chemistry , COVID-19/virology , Liquid Chromatography-Mass Spectrometry
2.
Anal Chem ; 95(6): 3532-3543, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36744576

ABSTRACT

Phospholipid-based materials exhibit great application potential in the fields of chemistry, biology, and pharmaceutical sciences. In this study, an inside-out oriented choline phosphate molecule, 2-{2-(methacryloyloxy)ethyldimethylammonium}ethyl n-butyl phosphate (MBP), was proposed and verified as a novel ligand of C-reactive protein (CRP) to enrich the functionality of these materials. Compared with phosphorylcholine (PC)-CRP interactions, the binding between MBP and CRP was not affected by the reverse position of phosphate and choline groups and even found more abundant binding sites. Thus, high-density MBP-grafted biomimetic magnetic nanomaterials (MBP-MNPs) were fabricated by reversible addition-fragmentation chain transfer polymerization based on thiol-ene click chemistry. The novel materials exhibited multifunctional applications for CRP including purification and ultrasensitive detection. On the one hand, higher specificity, recovery (90%), purity (95%), and static binding capacity (198.14 mg/g) for CRP were achieved on the novel materials in comparison with traditional PC-based materials, and the enriched CRP from patient serum can maintain its structural integrity and bioactivity. On the other hand, the CRP detection method combining G-quadruplex and thioflavin T developed with MBP-MNPs showed a lower detection limit (10 pM) and wider linear range (0.1-50 nM) than most PC-functionalized analytical platforms. Therefore, the inside-out oriented choline phosphate can not only precisely recognize CRP but also be combined with biomimetic nanomaterials to provide high application potential.


Subject(s)
C-Reactive Protein , Phosphorylcholine , Humans , Phosphorylcholine/chemistry , C-Reactive Protein/analysis , Biomimetics , Magnetic Phenomena , Phosphates
3.
J Chromatogr A ; 1687: 463693, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36516530

ABSTRACT

In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Lonicera , Oseltamivir/pharmacology , Neuraminidase , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology
4.
Molecules ; 27(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296516

ABSTRACT

How to rapidly and accurately screen bioactive components from complex natural products remains a major challenge. In this study, a screening platform for pancreatic lipase (PL) inhibitors was established by combining magnetic beads-based ligand fishing and high-resolution bioassay profiling. This platform was well validated using a mixture of standard compounds, i.e., (-)- epigallocatechin gallate (EGCG), luteolin and schisandrin. The dose-effect relationship of high-resolution bioassay profiling was demonstrated by the standard mixture with different concentrations for each compound. The screening of PL inhibitors from green tea extract at the concentrations of 0.2, 0.5 and 1.0 mg/mL by independent high-resolution bioassay profiling was performed. After sample pre-treatment by ligand fishing, green tea extract at the concentration of 0.2 mg/mL was specifically enriched and simplified, and consequently screened through the high-resolution bioassay profiling. As a result, three PL inhibitors, i.e., EGCG, (-)-Gallocatechin gallate (GCG) and (-)-Epicatechin gallate (ECG), were rapidly identified from the complex matrix. The established platform proved to be capable of enriching affinity binders and eliminating nonbinders in sample pre-treatment by ligand fishing, which overcame the technical challenges of high-resolution bioassay profiling in the aspects of sensitivity and resolution. Meanwhile, the high-resolution bioassay profiling possesses the ability of direct bioactive assessment, parallel structural analysis and identification after separation. The established platform allowed more accurate and rapid screening of PL inhibitors, which greatly facilitated natural product-based drug screening.


Subject(s)
Catechin , Lipase , Ligands , Luteolin/analysis , Catechin/chemistry , Plant Extracts/chemistry , Biological Assay , Tea/chemistry
5.
Front Pediatr ; 9: 706012, 2021.
Article in English | MEDLINE | ID: mdl-34621711

ABSTRACT

Circular RNAs (circRNAs) generated by back-splicing are the vital class of non-coding RNAs (ncRNAs). Circular RNAs are highly abundant and stable in eukaryotes, and many of them are evolutionarily conserved. They are blessed with higher expression in mammalian brains and could take part in the regulation of physiological and pathophysiological processes. In addition, premature birth is important in neurodevelopmental diseases. Brain damage in preterm infants may represent the main cause of long-term neurodevelopmental disorders in surviving babies. Until recently, more and more researches have been evidenced that circRNAs are involved in the pathogenesis of encephalopathy of premature. We aim at explaining neuroinflammation promoting the brain damage. In this review, we summarize the current findings of circRNAs properties, expression, and functions, as well as their significances in the neurodevelopmental impairments, white matter damage (WMD) and hypoxic-ischemic encephalopathy (HIE). So we think that circRNAs have a direct impact on neurodevelopment and brain injury, and will be a powerful tool in the repair of the injured immature brain. Even though their exact roles and mechanisms of gene regulation remain elusive, circRNAs have potential applications as diagnostic biomarkers for brain damage and the target for neuroprotective intervention.

6.
Toxicology ; 462: 152962, 2021 10.
Article in English | MEDLINE | ID: mdl-34560123

ABSTRACT

Inorganic arsenic is widely present in the environment. Exposure to moderate to high concentrations of arsenic from drinking water or air can cause various cancers and multisystem dysfunction. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) stress sensor of unfolded protein response (UPR) under stress conditions and it enhances cell survival. The aim of this study is to investigate molecular mechanisms of arsenic-induced GRP78 expression in BEAS-2B cells model. We found that GRP78 protein expression was enhanced, while the level of GRP78 mRNA expression did not change under arsenic trioxide (As2O3)-induced ER stress condition in BEAS-2B cells. Cycloheximide, a protein synthesis inhibitor, completely inhibited As2O3-induced GRP78 protein expression. GRP78 mRNA expression was inhibited by actinomycin-D (Act-D). However, GRP78 protein expression was upregulated in the presence of Act-D under As2O3-induced ER stress condition. These data indicated that the upregulation of GRP78 protein under As2O3-induced UPR condition was possibly due to the increased biosynthesis of GRP78 protein. Moreover, both inositol-requiring enzyme 1α (IRE1α) RNase and kinase inhibitor KIRA6 and IRE1α kinase inhibitor APY29 completely inhibited As2O3-induced GRP78 protein expression and phosphorylation of JNK, ERK and p38 MAPK. Activation of apoptotic signaling kinase 1 (ASK1) is a downstream effector of IRE1α kinase. ASK1 inhibitor selonsertib and p38 MAPK inhibitor SB203580 partially inhibited As2O3-induced GRP78 protein expression, respectively. Our results suggested that As2O3 enhanced GRP78 protein expression in BEAS-2B cells via IRE1α kinase/ASK1/p38 MAPK signaling pathway. To our knowledge, this is the first report on illuminating the related mechanisms of increased GRP78 protein expression in As2O3-induced ER stress condition through a novel IRE1α pathway.


Subject(s)
Arsenic Trioxide/toxicity , Endoplasmic Reticulum Chaperone BiP/genetics , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Line , Humans , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System/drug effects , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Ecotoxicol Environ Saf ; 222: 112531, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34303041

ABSTRACT

Inorganic arsenic compounds are environmental toxicants that are widely distributed in air, water, and food. B-cell lymphoma 2 (BCL-2) is an oncogene having anti-apoptotic function. In this study, we clarify that BCL-2, as a pro-apoptotic factor, participates in As2O3-induced apoptosis in BEAS-2B cells. Specifically, As2O3 stimulated the expression of BCL-2 mRNA and protein in a dose-dependent manner which was highly accumulated in the nucleus of BEAS-2B cell together with chromatin condensation and DNA fragmentation during apoptosis. Mechanistically, the process described above is mediated through the NF-κB and p38 MAPK signaling pathways, which can be abated by corresponding inhibitors, such as BAY11-7082 and SB203580, respectively. Additionally, BAY11-7082, actinomycin D, and cycloheximide have inhibitory effects on As2O3-induced expression of BCL-2 mRNA and protein, and restore the cell viability of BEAS-2B cells. Suppression of BCL-2 protein activation by ABT-199 also restored viability of BEAS-2B cell in As2O3-induced apoptosis. Furthermore, As2O3 increased the level of BCL-2 phosphorylation. These results suggest that in BEAS-2B cells, As2O3-induced apoptosis is mainly dominated by BCL-2 upregulation, nuclear localization and phosphorylation. The study presented here provides a novel insight into the molecular mechanism of BCL-2-induced apoptosis.


Subject(s)
Apoptosis , Arsenicals , Arsenic Trioxide/toxicity , NF-kappa B/genetics , Oxides/toxicity , Proto-Oncogene Proteins c-bcl-2/genetics , p38 Mitogen-Activated Protein Kinases/genetics
8.
Front Oncol ; 11: 633916, 2021.
Article in English | MEDLINE | ID: mdl-33912455

ABSTRACT

Hepatoid adenocarcinoma of the stomach (HAS) is a rare malignant tumor, accounting for only 0.17-15% of gastric cancers. Patients are often diagnosed at an advanced disease stage, and their symptoms are similar to conventional gastric cancer (CGC) without specific clinical manifestation. Morphologically, HAC has identical morphology and immunophenotype compared to hepatocellular carcinoma (HCC). This is considered to be an underestimation in diagnosis due to its rare incidence, and no consensus is reached regarding therapy. HAS generally presents with more aggressive behavior and worse prognosis than CGC. The present review summarizes the current literature and relevant knowledge to elaborate on the epidemic, potential mechanisms, clinical manifestations, diagnosis, management, and prognosis to help clinicians accurately diagnose and treat this malignant tumor.

9.
Toxicol Lett ; 332: 146-154, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32683294

ABSTRACT

Occludin is an important tight junction (TJ) protein in pulmonary epithelial cells. In this study, we identified changes in occludin in arsenic-induced lung injury in vivo and in vitro. Upon intratracheal instillation with arsenic trioxide (As2O3) at a daily dose of 30 µg/kg for 1 week, levels of occludin mRNA and protein expression decreased significantly in mouse lung tissue. Levels of occludin mRNA and protein expression in BEAS-2B cells were reduced upon exposure to As2O3 in a concentration- and time-dependent manner. In addition, exposure to As2O3 significantly increased expression of p-p38, p-ERK1/2, p-ELK1, and MLCK in mouse lung tissue and BEAS-2B cells. Treatment with As2O3 induced oxidative stress in mouse lung tissue and BEAS-2B cells. In BEAS-2B cells, exposure to As2O3 reduced transepithelial resistance, which was partially restored with N-acetyl-cysteine (NAC) treatment. Reduced expression of occludin mRNA and protein induced by As2O3 was entirely restored with NAC and resveratrol. However, SB203580, PD98059, and ML-7 partially blocked As2O3-induced occludin reduction in BEAS-2B cells. These results indicate that As2O3 inhibits occludin expression in vivo and in vitro at least partially via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways.


Subject(s)
Arsenites/toxicity , Lung/metabolism , Occludin/biosynthesis , Signal Transduction/drug effects , Animals , Cell Line , Down-Regulation/drug effects , Glutathione/metabolism , Humans , Lung/drug effects , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Occludin/drug effects , Oxidative Stress/drug effects , Peptides/drug effects , Peptides/metabolism , Reactive Oxygen Species , Superoxide Dismutase/metabolism , p38 Mitogen-Activated Protein Kinases/drug effects
10.
Chemosphere ; 255: 126954, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32387908

ABSTRACT

Silica nanoparticles (SiNPs) are one of the most widely used types of nanoparticles across many industrial sectors, and are known to be present in the air year-round. In this study, we aimed to evaluate the potential adverse effects of SiNP exposure on pulmonary epithelial tight junctions, which serve as a critical barrier between the respiratory system and the circulatory system. In vivo studies confirmed that SiNPs decreased the protein expression levels of zonula occludens 1 (ZO-1), zonula occludens 2 (ZO-2), and occludin in the lungs of C57BL/6 mice. In vitro studies showed that SiNPs not only decreased the mRNA and protein expression of ZO-1 and ZO-2, but also decreased the protein expression of occludin in human bronchial epithelial (BEAS-2B) cells. In addition, SiNP exposure increased reactive oxygen species (ROS) production and activated extracellular regulated protein kinases (ERKs) and c-Jun N-terminal kinase (JNK). The inhibition of ROS and ERKs effectively protected the SiNP-induced downregulation of ZO-1 mRNA and protein expression, but had no effect on ZO-2 or occludin expression. SiNP-induced matrix metalloproteinase 9 (MMP9) protein expression appeared to be involved in occludin proteolytic degradation, in addition to SiNP-induced direct occludin protein degradation. The present study suggests that SiNPs disturb pulmonary epithelial tight junction structure and function via the ROS/ERK pathway and protein degradation.


Subject(s)
Nanoparticles/toxicity , Reactive Oxygen Species/chemistry , Silicon Dioxide/toxicity , Animals , Bronchi , Down-Regulation , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/metabolism , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Occludin , Phosphoproteins/metabolism , Proteolysis , Reactive Oxygen Species/metabolism , Tight Junctions , Zonula Occludens-1 Protein
11.
RSC Adv ; 10(44): 26239-26245, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-35519757

ABSTRACT

In this work, an efficient and sensitive fluorometric sensor was developed to detect silver ions (Ag+). It is based on the cytosine-Ag+-cytosine (C-Ag+-C) structure via a dual-signal amplification strategy using glucose oxidase (GOx) and the hybridization chain reaction (HCR). A silver-coated glass slide (SCGS) acts as an ideal material for separation. Cytosine rich (C-rich) capture DNA (C-DNA) assembled themselves on the SCGS via Ag-S bonds and hybridized with signal DNA (S-DNA) to trigger the HCR. With specific base-pairing, the S-DNA and HCR products bind on the SCGS. Then, the GOx-biotin-streptavidin (SA) complexes bind to the HCR products through SA-biotin interactions. Owing to the formation of a particular C-Ag+-C structure between two neighboring C-rich C-DNA on the SCGS, the C-DNA/S-DNA/HP1-GOx/HP2-GOx complex gradually moved away from the SCGS as the concentration of Ag+ increased and the combined GOx fell into the buffer. H2O2 could be generated during the oxidation of glucose, catalyzed by GOx in the buffer. Afterward, H2O2 could oxidize the substrate (3-(p-hydroxyphenyl)-propanoic acid) when Horseradish peroxidase was present, giving rise to blue fluorescence. The proposed strategy reached a limit of detection (LOD) of 1.8 pmol L-1 with a linear detection range of 5 to 1000 pmol L-1 for Ag+. Moreover, this assay has been commendably used for the detection of Ag+ in actual samples with fairly good results.

12.
J Anal Methods Chem ; 2019: 3712032, 2019.
Article in English | MEDLINE | ID: mdl-30944752

ABSTRACT

A C-Ag+-C structure-based fluorescence biosensor with novel combination design of exonuclease III (Exo III) dual-recycling amplification is proposed for the application of silver ions (Ag+) detection. Since oligo-1 involves C-C mismatches, the presence of Ag+ can be captured to form C-Ag+-C base pairs, which results in a double-helix structure with a blunt terminus. The double-helix structure can be cleaved by EXO III to release short mononucleotide fragments (trigger DNA) and Ag+. Released Ag+ can form new bindings with oligo-1, and other trigger DNA can be produced in the digestion cycles. Hybridization with the signal DNA (oligo-2) transforms a trigger DNA into double-stranded DNA with blunt terminus which can be cleaved by Exo III to reproduce the trigger DNA and form guanine- (G-) quadruplex DNA. The trigger DNA returns free to the solution and hybridizes with another signal DNA, which realizes the dual-recycling amplification. The G-quadruplex DNA can be reported by N-methylmesoporphyrin IX (NMM), a specific G-quadruplex DNA fluorochrome. This method allows Ag+ to be determined in the 5 to 1500 pmol/L concentration range, with a 2 pmol/L detection limit, and it has been successfully applied to the detection of Ag+ in real samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...