Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Mol Histol ; 52(2): 373-383, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33543337

ABSTRACT

Exercise preconditioning (EP) can alleviate myocardial ischemic/hypoxic injury by inducing endogenous cardioprotection. Hematoxylin-eosin (HE), hematoxylin-basic fuchsin-picric acid (HBFP), and chromotrope-2R brilliant green (C-2R BG) staining have been used to visualize myocardial ischemic/hypoxic changes in previous EP studies, but comprehensive evaluation and comparisons of these methods are lacking. This study evaluated ischemic/hypoxic changes in adjacent myocardial sections by HE, HBFP, and C-2R BG and compared the characteristics of sections stained by these three methods to show changes associated with exercise-induced myocardial ischemic/hypoxic injury. Rats were randomly divided into four groups: control (C), exercise preconditioning (EP), exhaustive exercise (EE), and exercise preconditioning + exhaustive exercise (EP + EE). Adjacent myocardial sections were stained as described above and compared to evaluate the effects of exercise-induced myocardial ischemic/hypoxic injury. The three staining methods revealed consistent localization patterns of myocardial ischemic/hypoxic injury in all groups. Results suggest that EP can alleviate exhaustive exercise-induced myocardial ischemic/hypoxic injury, and the three staining methods are suitable for the histological study of exercise-induced myocardial ischemic/hypoxic injury and protection. HE staining is a simple procedure but is not specific for myocardial ischemic/hypoxic injury. HBFP and C-2R BG staining can be used to specifically visualize myocardial ischemic/hypoxic injury.


Subject(s)
Myocardial Ischemia/metabolism , Myocardium/metabolism , Physical Conditioning, Animal/physiology , Animals , Autophagy/physiology , Cell Hypoxia/physiology , Fatty Acid Binding Protein 3/metabolism , Male , Rats , Rats, Sprague-Dawley
2.
J Physiol Sci ; 70(1): 10, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066368

ABSTRACT

Exercise has been reported to induce autophagy. We hypothesized that exercise preconditioning (EP)-related autophagy in cardiomyocytes could be attributed to intermittent ischemia-hypoxia, allowing the heart to be protected for subsequent high-intensity exercise (HE). We applied approaches, chromotrope-2R brilliant green (C-2R BG) staining and plasma cTnI levels measuring, to characterize two periods of cardioprotection after EP: early EP (EEP) and late EP (LEP). Further addressing the relationship between ischemia-hypoxia and autophagy, key proteins, Beclin1, LC3, Cathepsin D, and p62, were determined by immunohistochemical staining, western blotting, and by their adjacent slices with C-2R BG. Results indicated that exercise-induced ischemia-hypoxia is a key factor in Beclin1-dependent autophagy. High-intensity exercise was associated with the impairment of autophagy due to high levels of LC3II and unchanged levels of p62, intermittent ischemia-hypoxia by EP itself plays a key role in autophagy, which resulted in more favorable cellular effects during EEP-cardioprotection compared to LEP.


Subject(s)
Autophagy , Heart Injuries/metabolism , Ischemic Preconditioning, Myocardial/methods , Physical Conditioning, Animal/adverse effects , Reperfusion Injury , Troponin I/blood , Animals , Gene Expression Regulation/physiology , Humans , Myocardial Ischemia/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Troponin I/genetics , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...