Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 14(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38929696

ABSTRACT

The oriental fruit fly, Bactrocera dorsalis (Hendel), poses a significant threat to the global fruit industry, causing damage to diverse fruits like citrus, mango, and guava. Chemical pesticides have limited effectiveness, and pesticide residues and pesticide resistance are pressing issues. Therefore, it is essential to develop environmentally friendly pest control methods to address this problem. Behavior-modifying chemicals, including male attractants and intersex protein baits, play a critical role in the control of B. dorsalis. The mature host fruit serves as both an oviposition site and food source under natural conditions, making it a potential attraction source for oriental fruit flies. Orange, Citrus sinensis, is a main host of B. dorsalis, and commercial orange juice is a common attractant for the egg laying of B. dorsalis. Although it can both attract and elicit oviposition behaviors in B. dorsalis adults, its active components are still unclear. This study utilized analytical chemistry, behavioral tests, and electrophysiology to identify the active components of commercial orange juice that attract B. dorsalis, with the aim of providing a reference for the development of behavior-modifying chemical-based techniques to control B. dorsalis. Five compounds with a high abundance were identified via a GC-MS, including D-Limonene, butanoic acid ethyl ester, ß-myrcene, linalool, and α-terpineol. Behavioral and electrophysiological experiments uncovered that D-Limonene was the active substance that was the main attractant in the mixture of these five substances, evoking a strong electrophysiological response in adult B. dorsalis. D-Limonene strongly attracts adult B. dorsalis only when they are sexually mature, and the attraction is not rhythmic. Olfaction plays a leading role in the attraction of D-Limonene to adult B. dorsalis, and Orco-/- mediates the perception of D-Limonene by B. dorsalis. Overall, D-Limonene is one of the key attractant compounds for B. dorsalis in the volatile compounds of commercial orange juice, offering possible support for the development of behavior-modifying chemical-based technology to control B. dorsalis in the future.

2.
J Chem Ecol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740727

ABSTRACT

The Oriental fruit fly, Bactrocera dorsalis, is a significant pest that damages a variety of fruit crops. The effectiveness of chemical pesticides against such pests is limited, raising concerns about pesticide residues and resistance. Proteins naturally attract B. dorsalis and have led to the development of a management strategy known as protein bait attractant technology (BAT). Although the attraction of protein sources to B. dorsalis is well-documented, the biologically active components within these sources are not fully understood. This study employed analytical chemistry, behavioral tests, and electrophysiological techniques to investigate the behaviorally active components of beer yeast protein powder (BYPD), aiming to provide a basis for improving and developing protein baits. An olfactory trap assay confirmed the attractiveness of BYPD, and five components with high abundance were identified from its headspace volatiles using GC-MS. These components included ethanol, isoamyl alcohol, ethyl decanoate, benzaldehyde, and phenylethyl alcohol. Mixtures of these five components demonstrated significant attraction to B. dorsalis adults, with benzaldehyde identified as a potential key component. The attractiveness of benzaldehyde required a relatively large dose, and it was most attractive to adults that had been starved from dusk until the following morning. Attraction of adult flies to benzaldehyde appeared mainly mediated by inputs from olfactory receptors. While EAG data supports that ionotropic receptors could influence the detection of benzaldehyde in female adults, they did not affect female behavior towards benzaldehyde. These findings indicate that benzaldehyde is an important behaviorally active component in BYPD and offer insights for developing novel protein lures to control B. dorsalis in an environmentally friendly manner.

3.
Insects ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786870

ABSTRACT

UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs).

4.
J Agric Food Chem ; 72(14): 7784-7793, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38561632

ABSTRACT

The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.


Subject(s)
Receptors, Odorant , Tephritidae , Animals , Female , Receptors, Odorant/genetics , Oviposition , Tephritidae/physiology , Benzothiazoles/pharmacology
5.
Insect Mol Biol ; 33(2): 136-146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37877756

ABSTRACT

The key phenotype white eye (white) has been used for decades to selectively remove females before release in sterile insect technique programs and as an effective screening marker in genetic engineering. Bactrocera dorsalis is a representative tephritid pest causing damage to more than 150 fruit crops. Yet, the function of white in important biological processes remains unclear in B. dorsalis. In this study, the impacts of the white gene on electrophysiology and reproductive behaviour in B. dorsalis were tested. The results indicated that knocking out Bdwhite disrupted eye pigmentation in adults, consistent with previous reports. Bdwhite did not affect the antennal electrophysiology response to 63 chemical components with various structures. However, reproductive behaviours in both males and females were significantly reduced in Bdwhite-/- . Both pre-copulatory and copulation behaviours were significantly reduced in Bdwhite-/- , and the effect was male-specific. Mutant females significantly delayed their oviposition towards γ-octalactone, and the peak of oviposition behaviour towards orange juice was lost. These results show that Bdwhite might not be an ideal screening marker in functional gene research aiming to identify molecular targets for behaviour-modifying chemicals. Instead, owing to its strong effect on B. dorsalis sexual behaviours, the downstream genes regulated by Bdwhite or the genes from white-linked areas could be alternate molecular targets that promote the development of better behavioural modifying chemical-based pest management techniques.


Subject(s)
Oviposition , Tephritidae , Female , Animals , Male , Electrophysiology
6.
J Agric Food Chem ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910823

ABSTRACT

Developing behavioral modifying chemicals through molecular targets is a promising way to improve semiochemical-based technology for pest management. Identifying molecular targets that affect insect behavior largely relies on functional genetic techniques such as deletions, insertions, and substitutions. Selectable markers have thus been developed to increase the efficiency of screening for successful editing events. However, the effect of selectable markers on relevant phenotypic traits needs to be considered. In this study, we cloned the wp gene ofBactrocera dorsalis. Knocking out Bdorwp causes white pupae phenotypes. Reproductive behaviors in both males and females were strongly regulated by Bdorwp. Remarkably, Bdorwp did not affect the antennal electrophysiology response to 63 chemical components with various structures. It is recommended to indirectly apply Bdorwp as a selectable marker in functional gene research on behavioral modifying chemicals. Moreover, Bdorwp could also be a potential molecular target for developing new insecticides for tephritid species control.

7.
J Vis Exp ; (187)2022 09 28.
Article in English | MEDLINE | ID: mdl-36279540

ABSTRACT

The Oriental fruit fly, Bactrocera dorsalis, is a highly invasive and adaptive pest species that causes damage to citrus and over 150 other fruit crops worldwide. Since adult fruit flies have great flight capacity and females lay their eggs under the skins of fruit, insecticides requiring direct contact with the pest usually perform poorly in the field. With the development of molecular biological tools and high-throughput sequencing technology, many scientists are attempting to develop environmentally friendly pest management strategies. These include RNAi or gene editing-based pesticides that downregulate or silence genes (molecular targets), such as olfactory genes involved in searching behavior, in various insect pests. To adapt these strategies for Oriental fruit fly control, effective methods for functional gene research are needed. Genes with critical functions in the survival and reproduction of B. dorsalis serve as good molecular targets for gene knockdown and/or silencing. The CRISPR/Cas9 system is a reliable technique used for gene editing, especially in insects. This paper presents a systematic method for CRISPR/Cas9 mutagenesis of B. dorsalis, including the design and synthesis of guide RNAs, collecting embryos, embryo injection, insect rearing, and mutant screening. These protocols will serve as a useful guide for generating mutant flies for researchers interested in functional gene studies in B. dorsalis.


Subject(s)
Insecticides , Tephritidae , Animals , Female , CRISPR-Cas Systems , Tephritidae/genetics , Drosophila , Mutagenesis , Insecta
8.
Article in English | MEDLINE | ID: mdl-28465710

ABSTRACT

BACKGROUND: Advances in healthcare have improved the survival of children with neurological disabilities (ND). Studies in the US have shown that children with ND use a substantial proportion of resources in children's hospitals, however, little research has been conducted in the UK. We aimed to test the hypothesis that children with neurological disabilities use more inpatient resources than children without neurological disabilities, and to quantify any significant differences in resource use. METHODS: A retrospective observational study was conducted, looking at the number of hospital admissions, total inpatient days and the reason for admissions for paediatric inpatients from January 1st to March 31st 2015. Inpatients were assigned into one of three groups: children without ND, children with one ND, and children with more than one ND. RESULTS: The sample population included 942 inpatients (mean age 6y 6mo). Children with at least one ND accounted for 15.3% of the inpatients, 17.7% of total hospital inpatient admission episodes, and 27.8% of the total inpatients days. Neurological disability had a statistically significant effect on total hospital admissions (p < 0.001). Neurological disability also had a statistically significant effect on total inpatient days (p < 0.001). Neurological disability increased the length of inpatient stay across medicine, specialties, and surgery. CONCLUSIONS: Children with ND had more frequent hospital admission episode and longer inpatient stays. We identified a smaller group within this population, with arguably more complex neurological disabilities, children with more than one ND. This group had the highest number of admissions and longest inpatient stays. More frequent hospital admissions and longer inpatient stays may place children with ND at greater risk of the adverse effects of hospitalisations. We recommend further investigations looking at each the effects of the different categories of ND on inpatient resource use, and repeat of this study at a national level and over a longer period of time.

SELECTION OF CITATIONS
SEARCH DETAIL
...