Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543401

ABSTRACT

The non-degradable nature of petroleum-based plastics and the dependence on petroleum-based products in daily life and production are dilemmas of human development today. We hereby developed a plastic waste upcycling process to address these challenges. A multi-stream fraction strategy was developed to process poly (ethylene terephthalate) (PET) plastics into soluble and insoluble fractions. The soluble fraction was used as a sole carbon source for microbial fermentation to produce biodiesel precursor lipids with an appreciable bioconversion yield. The insoluble fraction containing fractionated polymers was used as the asphalt binder modifiers. The downsized PET additive improved the high-temperature performance of the asphalt binder by 1 performance grade (PG) without decreasing the low-temperature PG. Subsequent SEM imaging unveiled alterations in the micromorphology induced by PET incorporation. Further FTIR and 1H NMR analysis highlighted the aromatic groups of PET polymers as a crucial factor influencing performance enhancement. The results demonstrated the multi-stream fraction as a promising approach for repurposing plastic waste to produce biodiesel and modify asphalt. This approach holds the potential to tackle challenges in fuel supply and enhance infrastructure resilience to global warming.

2.
iScience ; 26(10): 107870, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766973

ABSTRACT

Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi Irpex lacteus and Dichomitus squalens during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from I. lacteus CD2 could use diverse electron donors to produce H2O2, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.

3.
iScience ; 26(4): 106282, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36910327

ABSTRACT

Three-dimensional structure and dynamics are essential for protein function. Advancements in hydrogen-deuterium exchange (HDX) techniques enable probing protein dynamic information in physiologically relevant conditions. HDX-coupled mass spectrometry (HDX-MS) has been broadly applied in pharmaceutical industries. However, it is challenging to obtain dynamics information at the single amino acid resolution and time consuming to perform the experiments and process the data. Here, we demonstrate the first deep learning model, artificial intelligence-based HDX (AI-HDX), that predicts intrinsic protein dynamics based on the protein sequence. It uncovers the protein structural dynamics by combining deep learning, experimental HDX, sequence alignment, and protein structure prediction. AI-HDX can be broadly applied to drug discovery, protein engineering, and biomedical studies. As a demonstration, we elucidated receptor-binding domain structural dynamics as a potential mechanism of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody efficacy and immune escape. AI-HDX fundamentally differs from the current AI tools for protein analysis and may transform protein design for various applications.

4.
Trends Biotechnol ; 40(12): 1550-1566, 2022 12.
Article in English | MEDLINE | ID: mdl-36270902

ABSTRACT

Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.


Subject(s)
Lignin , Lignin/chemistry , Biochemistry
5.
Trends Biotechnol ; 40(12): 1535-1549, 2022 12.
Article in English | MEDLINE | ID: mdl-36273927

ABSTRACT

Feedstock design is crucial for lignocellulosic biomass use. Current strategies for feedstock design cannot be readily applied to improve the quality of biomass-based materials, limiting the sustainability and economics of lignocellulosic biorefineries. Recent studies have advanced the understanding of biomass structure-property relationships and discovered several characteristics, such as molecular weight, uniformity, linkage profile, and functional groups, that are critical for manufacturing diverse quality biomaterials. These discoveries call for fundamentally different strategies for feedstock development. Such strategies need to rediscover the roles of monolignol biosynthesis enzymes and leverage lignin polymerization enzymes to achieve precise control of lignin molecular structure. These innovations could transform biomass into feedstock for high-quality biomaterials, addressing essential environmental challenges and empowering the bioeconomy.


Subject(s)
Biocompatible Materials , Lignin , Lignin/chemistry , Biomass
7.
Nat Commun ; 13(1): 4368, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902555

ABSTRACT

Chemical pollution threatens human health and ecosystem sustainability. Persistent organic pollutants (POPs) like per- and polyfluoroalkyl substances (PFAS) are expensive to clean up once emitted. Innovative and synergistic strategies are urgently needed, yet process integration and cost-effectiveness remain challenging. An in-situ PFAS remediation system is developed to employ a plant-derived biomimetic nano-framework to achieve highly efficient adsorption and subsequent fungal biotransformation synergistically. The multiple component framework is presented as Renewable Artificial Plant for In-situ Microbial Environmental Remediation (RAPIMER). RAPIMER exhibits high adsorption capacity for the PFAS compounds and diverse adsorption capability toward co-contaminants. Subsequently, RAPIMER provides the substrates and contaminants for in situ bioremediation via fungus Irpex lacteus and promotes PFAS detoxification. RAPIMER arises from cheap lignocellulosic sources, enabling a broader impact on sustainability and a means for low-cost pollutant remediation.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Fluorocarbons , Water Pollutants, Chemical , Biodegradation, Environmental , Biomimetics , Ecosystem , Fluorocarbons/analysis , Humans , Lignin , Water Pollutants, Chemical/analysis
8.
Biotechnol Adv ; 60: 108000, 2022 11.
Article in English | MEDLINE | ID: mdl-35675848

ABSTRACT

As the largest renewable aromatic resource, lignin is a promising feedstock for production of value-added products. However, lignin valorization has not been implemented due to the recalcitrant and heterogeneity of lignin. Herein, this work provides a systematic overview of bacterial lignin valorization for producing value-added products from the viewpoint of a cascaded conversion route. The combinatorial depolymerization strategy facilitates the yield of a lignin-derived aromatic stream suitable for the bacterial conversion. Bacterial active transports are curial to improve the uptake of lignin-derived aromatics. Intracellular metabolic pathways of bacteria assimilate heterogenous lignin-derived aromatics through "biological funnel" into central aromatic intermediates. These intermediates can be effectively metabolized in bacteria through aromatic ring cleavage pathways to enable the biosynthesis of various value-added products. The techno-economic analysis highlights that bacterial conversion improves the feasibility of co-production of value-added products from lignin. Therefore, the bacterial cascaded conversion routes hold great promise for upgrading heterogeneous lignin into value-added products and thus contribute to the profitability of lignin valorization.


Subject(s)
Bacteria , Lignin , Bacteria/metabolism , Lignin/metabolism , Metabolic Networks and Pathways
9.
Metab Eng Commun ; 14: e00193, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35145855

ABSTRACT

Terpenoids are a large group of secondary metabolites with broad industrial applications. Engineering cyanobacteria is an attractive route for the sustainable production of commodity terpenoids. Currently, a major obstacle lies in the low productivity attained in engineered cyanobacterial strains. Traditional metabolic engineering to improve pathway kinetics has led to limited success in enhancing terpenoid productivity. In this study, we reveal thermodynamics as the main determinant for high limonene productivity in cyanobacteria. Through overexpressing the primary sigma factor, a higher photosynthetic rate was achieved in an engineered strain of Synechococcus elongatus PCC 7942. Computational modeling and wet lab analyses showed an increased flux toward both native carbon sink glycogen synthesis and the non-native limonene synthesis from photosynthate output. On the other hand, comparative proteomics showed decreased expression of terpene pathway enzymes, revealing their limited role in determining terpene flux. Lastly, growth optimization by enhancing photosynthesis has led to a limonene titer of 19 mg/L in 7 days with a maximum productivity of 4.3 mg/L/day. This study highlights the importance of enhancing photosynthesis and substrate input for the high productivity of secondary metabolic pathways, providing a new strategy for future terpenoid engineering in phototrophs.

10.
Nat Commun ; 13(1): 541, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087023

ABSTRACT

Algal biofuel is regarded as one of the ultimate solutions for renewable energy, but its commercialization is hindered by growth limitations caused by mutual shading and high harvest costs. We overcome these challenges by advancing machine learning to inform the design of a semi-continuous algal cultivation (SAC) to sustain optimal cell growth and minimize mutual shading. An aggregation-based sedimentation (ABS) strategy is then designed to achieve low-cost biomass harvesting and economical SAC. The ABS is achieved by engineering a fast-growing strain, Synechococcus elongatus UTEX 2973, to produce limonene, which increases cyanobacterial cell surface hydrophobicity and enables efficient cell aggregation and sedimentation. SAC unleashes cyanobacterial growth potential with 0.1 g/L/hour biomass productivity and 0.2 mg/L/hour limonene productivity over a sustained period in photobioreactors. Scaling-up the SAC with an outdoor pond system achieves a biomass yield of 43.3 g/m2/day, bringing the minimum biomass selling price down to approximately $281 per ton.


Subject(s)
Biofuels , Machine Learning , Microalgae/growth & development , Microalgae/metabolism , Synthetic Biology , Biomass , Biotechnology , Industrial Microbiology , Metabolic Engineering , Microalgae/genetics , Photobioreactors , Ponds , Renewable Energy , Synechococcus/growth & development
11.
Biodes Res ; 2022: 9897425, 2022.
Article in English | MEDLINE | ID: mdl-37850123

ABSTRACT

Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO2 into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in Synechococcus elongatus PCC 7942. We then engineered key "source" and "sink" enzymes. The "source" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production via altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between "source" and "sink" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of "source" and "sink" synergy has significant potential in improving natural product yield in photosynthetic species.

12.
Nat Commun ; 12(1): 5150, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446715

ABSTRACT

Recent studies have revealed the prevalence and biological significance of guanidine metabolism in nature. However, the metabolic pathways used by microbes to degrade guanidine or mitigate its toxicity have not been widely studied. Here, via comparative proteomics and subsequent experimental validation, we demonstrate that Sll1077, previously annotated as an agmatinase enzyme in the model cyanobacterium Synechocystis sp. PCC 6803, is more likely a guanidinase as it can break down guanidine rather than agmatine into urea and ammonium. The model cyanobacterium Synechococcus elongatus PCC 7942 strain engineered to express the bacterial ethylene-forming enzyme (EFE) exhibits unstable ethylene production due to toxicity and genomic instability induced by accumulation of the EFE-byproduct guanidine. Co-expression of EFE and Sll1077 significantly enhances genomic stability and enables the resulting strain to achieve sustained high-level ethylene production. These findings expand our knowledge of natural guanidine degradation pathways and demonstrate their biotechnological application to support ethylene bioproduction.


Subject(s)
Bacterial Proteins/metabolism , Ethylenes/biosynthesis , Genomic Instability , Guanidine/metabolism , Synechococcus/genetics , Synechococcus/metabolism , Synechocystis/enzymology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Synechocystis/genetics
13.
ChemSusChem ; 14(19): 4260-4269, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34258878

ABSTRACT

The accumulation of non-degradable petrochemical plastics imposes a significant threat to the environment and ecosystems. We addressed this challenge by designing a new type of phototunable plastics based on the unique lignin chemistry to enable readily end-life recycling. The advanced material design leveraged the efficient photocatalytic lignin depolymerization by ZnO nanoparticles to build lignin-polymethyl methacrylate (PMMA)-ZnO blends. We first demonstrated the highly effective phototunable lignin depolymerization in the complex polymer blend matrix and explored the molecular mechanisms. The technical barriers of mechanical property and recycling processing were then addressed by a new blend design with lignin core grafted with PMMA polymer. The new process has resulted in a new type of PMMA-g-lignin blend, which significantly improved the mechanical properties, making it comparable to PMMA alone. More importantly, the mechanical properties of the UV-treated blend decreased drastically in the new design, whereas the properties did not reduce in the non-grafted blends upon UV exposure. The results highlighted that the new blend design based on graftization maximized the impact of lignin depolymerization on blend structure and recyclability. Based on the results, we developed a process integrating UV and alkaline treatments to recycle PMMA for plastics and fractionated lignin for bioconversion or other applications in the new phototunable plastics.

14.
Nat Commun ; 12(1): 3912, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162838

ABSTRACT

Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.


Subject(s)
Carbon/metabolism , Lignin/metabolism , Polyhydroxyalkanoates/metabolism , Bioengineering/economics , Bioengineering/methods , Carbohydrates/chemistry , Hydrolysis , Industrial Microbiology/economics , Industrial Microbiology/methods , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
15.
iScience ; 23(8): 101405, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32771975

ABSTRACT

Traditional lignocellulosic feedstock research has focused on biomass characteristics essential for improving saccharification efficiency, yet the key biomass features underlying high-quality renewable lignin materials remain unknown. Nevertheless, modern biorefinery cannot achieve sustainability and cost-effectiveness unless the lignin stream can be valorized. We hereby addressed these scientific gaps by investigating biomass characteristics defining lignin-based carbon materials properties. Lignin from eight sorghum samples with diverse characteristics was fabricated into carbon fibers (CFs). Remarkably, only lignin uniformity was found to define CF mechanical performance, highlighting the new structure-property relationship. Contrarily, lignin content and composition did not impact on carbon material properties. Mechanistic study by XRD and Raman spectroscopy revealed that higher lignin uniformity enhanced CF microstructures, in particular, turbostratic carbon content. The study for the first time highlighted lignin uniformity as an important biomass structure determinant for renewable products, which opened up new avenues for feedstock design toward diverse products enabling sustainable and cost-effective bioeconomy.

16.
ChemSusChem ; 13(20): 5423-5432, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32750220

ABSTRACT

Biological lignin valorization represents a promising approach contributing to sustainable and economic biorefineries. The low level of valuable lignin-derived products remains a major challenge hindering the implementation of microbial lignin conversion. Lignin's properties play a significant role in determining the efficiency of lignin bioconversion. To date, despite significant progress in the development of biomass pretreatment, lignin fractionation, and fermentation over the last few decades, little efforts have gone into identifying the ideal lignin substrates for an efficient microbial metabolism. In this Minireview, emerging and state-of-the-art strategies for biomass pretreatment and lignin fractionation are summarized to elaborate their roles in modifying lignin structure for bioconversion. Fermentation strategies aimed at enhancing lignin depolymerization for microbial utilization are systematically reviewed as well. With an improved understanding of the ideal lignin structure elucidated by comprehensive metabolic pathways and/or big data analysis, modifying lignin chemistry could be more directional and effective. Ultimately, together with the progress of fermentation process optimization, biological lignin valorization will become more competitive in biorefineries.


Subject(s)
Cell Culture Techniques/methods , Lignin/chemistry , Lignin/metabolism , Biomass , Fermentation , Glucose/chemistry , Metabolic Networks and Pathways , Molecular Structure , Polymerization , Solvents/chemistry , Xylose/chemistry
17.
Plant Physiol ; 183(2): 588-601, 2020 06.
Article in English | MEDLINE | ID: mdl-32229607

ABSTRACT

The Antarctic green alga Chlamydomonas sp. UWO 241 (UWO 241) is adapted to permanent low temperatures, hypersalinity, and extreme shade. One of the most striking phenotypes of UWO 241 is an altered PSI organization and constitutive PSI cyclic electron flow (CEF). To date, little attention has been paid to CEF during long-term stress acclimation, and the consequences of sustained CEF in UWO 241 are not known. In this study, we combined photobiology, proteomics, and metabolomics to understand the underlying role of sustained CEF in high-salinity stress acclimation. High salt-grown UWO 241 exhibited increased thylakoid proton motive flux and an increased capacity for nonphotochemical quenching. Under high salt, a significant proportion of the up-regulated enzymes were associated with the Calvin-Benson-Bassham cycle, carbon storage metabolism, and protein translation. Two key enzymes of the shikimate pathway, 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate synthase, were also up-regulated, as well as indole-3-glycerol phosphate synthase, an enzyme involved in the biosynthesis of l-Trp and indole acetic acid. In addition, several compatible solutes (glycerol, Pro, and Suc) accumulated to high levels in high salt-grown UWO 241 cultures. We suggest that UWO 241 maintains constitutively high CEF through the associated PSI-cytochrome b 6 f supercomplex to support robust growth and strong photosynthetic capacity under a constant growth regime of low temperatures and high salinity.


Subject(s)
Chlamydomonas/metabolism , Electron Transport/physiology , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Protons , Thylakoids/metabolism
18.
Chem Commun (Camb) ; 55(84): 12655-12658, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31583396

ABSTRACT

A plant-derived lignin polymer has been sought-after as a low-cost carbon fiber (CF) precursor, but the underlying mechanisms defining CF performances are still elusive. This study revealed that both the electroconductive and mechanical performances of lignin-based CF were synergistically improved by enhancing the microstructures through modifying the lignin chemistry, which paved a pathway to holistically improve the lignin CF quality.

19.
Adv Sci (Weinh) ; 6(13): 1801980, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31380177

ABSTRACT

Bacterial protein secretion represents a significant challenge in biotechnology, which is essential for the cost-effective production of therapeutics, enzymes, and other functional proteins. Here, it is demonstrated that proteomics-guided engineering of transcription, translation, secretion, and folding of ligninolytic laccase balances the process, minimizes the toxicity, and enables efficient heterologous secretion with a total protein yield of 13.7 g L-1. The secretory laccase complements the biochemical limits on lignin depolymerization well in Rhodococcus opacus PD630. Further proteomics analysis reveals the mechanisms for the oleaginous phenotype of R. opacus PD630, where a distinct multiunit fatty acid synthase I drives the carbon partition to storage lipid. The discovery guides the design of efficient lipid conversion from lignin and carbohydrate. The proteomics-guided integration of laccase-secretion and lipid production modules enables a high titer in converting lignin-enriched biorefinery waste to lipid. The fundamental mechanisms, engineering components, and design principle can empower transformative platforms for biomanufacturing and biorefining.

20.
ChemSusChem ; 12(14): 3249-3256, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31066978

ABSTRACT

Even though lignin carbon fiber has been sought after for several decades, the poor mechanical performance remains to be a major barrier for commercial applications. The low mechanical performance is attributed to the heterogeneity of lignin polymer. Recent advances in fractionation technologies showed the great potential to reduce lignin heterogeneity, but current fractionation methods often depend on costly chemicals and materials such as enzymes, organic solvents, membranes, and dialysis tubes. Here, a new non-solvent strategy was developed to fractionate lignin by autohydrolysis. By using only water, lignin was efficiently fractionated into water-soluble and -insoluble fractions. The latter fraction had increased molecular weight and uniformity and resulted in more ß-O-4 interunitary linkages as analyzed by size-exclusion chromatography and 2D heteronuclear single quantum coherence NMR spectroscopy, respectively. In particular, the water-insoluble fraction significantly enhanced the mechanical performances of the resultant carbon fibers. Mechanistic study by differential scanning calorimetry (DSC) revealed that the miscibility of lignin with guest polyacrylonitrile molecules was improved with the reduced lignin heterogeneity. Crystallite analyses by XRD and Raman spectroscopy revealed that the crystallite size and content of the pre-graphitic turbostratic carbon structure were increased. The fundamental understanding revealed how lignin fractionation could modify lignin chemical features to enhance the mechanical performance of resultant carbon fibers. The autohydrolysis fractionation thus represents a green, economic, and efficient methodology to process lignin waste and boost lignin carbon fiber quality, which could open new horizons for lignin valorization.

SELECTION OF CITATIONS
SEARCH DETAIL
...