Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834879

ABSTRACT

This study investigates the potential of vitamin C (VC) and/or betaine (Bet) to enhance growth performance, regulate serum metabolism, and bolster antioxidant function aiming to mitigate the impact of heat stress (HS) on broilers. Two hundred Ross 308 broilers at 28 days of age were randomly assigned to five groups. The control group, housed at 24 ± 1℃, was fed a basal diet. High-temperature treatment groups, housed at 32 ± 1℃, received a basal diet with 0 (HS group), 250 mg/kg VC (HSVC group), 1000 mg/kg Bet (HSBe group), and 250 mg/kg VC + 1000 mg/kg Bet (HSVCBe group). On day 42, assessments were made on growth performance, muscle quality, serum biochemistry, and antioxidant function. Results revealed that HS significantly lowered (P < 0.05) average daily feed intake (ADFI), the degree of redness (a*) in muscles, and serum total superoxide dismutase (T-SOD) level. It also reduced (P < 0.01) average daily gain (ADG), and serum total antioxidant capacity (T-AOC) level, while increasing (P < 0.05) shear force, serum direct bilirubin (D-BIL), uric acid (UA), and malondialdehyde (MDA) levels compared with the control group. Dietary supplementation of VC and Bet, either alone or in combination, significantly decreased shear force and serum UA level, while increasing ADG and serum T-AOC, T-SOD level compared with the HS group (P < 0.05). In conclusion, the addition of VC and/or Bet to the diet proves effective in enhancing the growth performance of HS-exposed broilers through the positive regulation of serum chemical metabolism and the alleviation of oxidative damage.

2.
J Hazard Mater ; 470: 134305, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626677

ABSTRACT

Phosphorus-solubilizing bacteria (PSB) assisted phytoremediation of cadmium (Cd) pollution is an effective method, but the mechanism of PSB-enhanced in-situ remediation of Cd contaminated sediment by submerged plants is still rare. In this study, PSB (Leclercia adecarboxylata L1-5) was inoculated in the rhizosphere of Potamogeton crispus L. (P. crispus) to explore the effect of PSB on phytoremediation. The results showed that the inoculation of PSB effectively improved the Cd extraction by P. crispus under different Cd pollution and the Cd content in the aboveground and underground parts of P. crispus all increased. The µ-XRF images showed that most of the Cd was enriched in the roots of P. crispus. PSB especially showed positive effects on root development and chlorophyll synthesis. The root length of P. crispus increased by 51.7 %, 80.5 % and 74.2 % under different Cd pollution, and the Ca/Cb increased by 38.9 %, 15.2 % and 8.6 %, respectively. Furthermore, PSB enhanced the tolerance of P. crispus to Cd. The contents of soluble protein, MDA and H2O2 in 5 mg·kg-1 and 7 mg·kg-1 Cd content groups were decreased and the activities of antioxidant enzymes were increased after adding PSB. The results showed that the application of PSB was beneficial to the in-situ remediation of submerged plants.


Subject(s)
Biodegradation, Environmental , Cadmium , Enterobacteriaceae , Enzymes , Geologic Sediments , Phosphates , Potamogetonaceae , Cadmium/metabolism , Chlorophyll/metabolism , Enterobacteriaceae/metabolism , Enzymes/metabolism , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Oxidation-Reduction , Phosphates/metabolism , Plant Proteins/metabolism , Potamogetonaceae/enzymology , Potamogetonaceae/growth & development , Potamogetonaceae/metabolism , Potamogetonaceae/microbiology , Solubility , Rhizosphere , Plant Roots/metabolism , Soil Pollutants/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism
3.
Trop Anim Health Prod ; 56(1): 9, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085433

ABSTRACT

Heat stress (HS) can affect growth performance through alterations in specific gut microbiota, which greatly threatens poultry production. How HS affects the mechanisms of microbial changes in the poultry cecum and the complex interactions between cecal microbial changes and growth performance have not yet been well evaluated. This study was conducted to examine the changes in growth performance and cecal microbiotal community in cyclic heat stress (CHS)-treated broilers. A total of 200 twenty-eight-day-old female Arbor Acres (AA) broilers were equally allotted into neutral ambient temperature group (TN group, 24 ± 1°C, 24 h/day) and CHS group (33 ± 1°C, 8 h/day) with five replicates of 10 broilers each, respectively. Growth performance, cecum microbial diversity, flora composition, and community structure were analyzed on days 35 and 42. The decreased average daily feed intake (ADFI), average daily gain (ADG), and the increased feed/gain ratio (F:G) were observed in heat-stressed broilers on days 35 and 42. The alpha and beta diversity index had no significant changes at the two experimental periods (P > 0.05). At the genus level, CHS significantly increased the relative abundance of Enterococcus at 42 days (P < 0.05). Based on the analysis of linear effect size feature selection, CHS made an enriched Reyranella and a reduced Romboutsia and Ruminiclostridium at 35 days of age (P < 0.05). CHS made an enriched Weissella and Enterococcus at 42 days of age (P < 0.05). The present study revealed that CHS reduces broiler growth performance and alters the microbial community of the cecum microbiota and the abundance of species. These findings are of critical importance to alleviate the negative effects of CHS on broiler chickens' growth performance by maintaining gut microbial balance.


Subject(s)
Dietary Supplements , Microbiota , Animals , Female , Dietary Supplements/analysis , Chickens , Cecum , Heat-Shock Response
4.
J Hazard Mater ; 437: 129402, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35738173

ABSTRACT

Soil lead pollution becomes a serious environmental problem. Microbial remediation has received widespread attentions due to high efficiency and no secondary pollution. In this research, a noval porous spherical phosphate-solubilizing bacteria bead loaded with biochar/nZVI (Bio-bead) was used to passivate lead in soil, and the effects and microecological regulation mechanisms of this process were also investigated. The results showed that the pH, OM, and AP of soil in the Bio-bead group were increased and the ORP was decreased over time compared with the blank group. The proportion of stable (oxidizable and residue) fractions of lead in Bio-bead group (45%) was much higher than that of the blank group (35%). In addition, the result of microbial community structure showed that Bio-beads did not change the species of dominant bacterial, excepting the abundance of Pseudomonas increased significantly and the abundance of Sphingomonas reduced during remediation. Redundancy analysis showed that pH, OM, AP and the ratio of residual and oxidizable fractions lead in soil were positively correlated with the abundance of Pseudomonas, while ORP was negatively correlated with the abundance of Pseudomonas. These findings have proved that Bio-bead is a potential strategy for remediation of lead-contaminated soil even in complexed soils.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Bacteria , Charcoal/chemistry , Iron/chemistry , Lead , Phosphates , Porosity , Soil/chemistry , Soil Pollutants/analysis
5.
J Hazard Mater ; 419: 126433, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34323720

ABSTRACT

Bioremediation technology has attracted increasing interest due to it efficient, economical and eco-friendly to apply to heavy metal contaminated soil. This study presents a new biological remediation system with phosphate functionalized iron-based nanomaterials and phosphate solubilizing bacterium strain Leclercia adecarboxylata. Different phosphate content functionalized iron-based nanomaterials were prepared, and nZVI@C/P1 (nP: nFe: nC=1:10:200) with high passivation efficiency was selected to combine with PSB for the remediation experiments. The change in lead fraction and microbial community under five conditions (CK, PSB, nZVI@C, nZVI@C/P1, nZVI@C/P1 + PSB) during 10 days incubation were investigate. The results indicated that nZVI@C/P1 + PSB increased the residual fraction of lead by 93.94% compared with the control group. Meanwhile, inoculation of Leclercia adecarboxylata became the dominant microflora in the soil microbial community during the remediation time, improving the utilization rate of phosphate in nZVI@C/P1 and enhancing the passivation efficiency of lead. Experimental findings demonstrated that combining nZVI@C/P1 with PSB could be considered as an efficient strategy for the lead contaminated soil remediation.


Subject(s)
Environmental Restoration and Remediation , Nanostructures , Soil Pollutants , Bacteria , Biodegradation, Environmental , Enterobacteriaceae , Iron , Lead , Phosphates , Soil , Soil Pollutants/analysis
6.
Med Sci Monit ; 24: 2134-2141, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29633755

ABSTRACT

BACKGROUND Protein kinase C (PKC), interleukin (IL)-13, prostaglandin E2 (PGE2), and prostacyclin 2 (PGI2) can all play crucial roles in pulmonary fibrosis. However, their functions remain unclear in hepatic fibrosis mediated by hepatic stellate cells (HSCs), which has been demonstrated to be related to transforming growth factor-ß (TGF-ß) and platelet-derived growth factor (PDGF). MATERIAL AND METHODS All the experiments were based on LX-2 Hepatic stellate cells. The expression of TGF-ß1 and PDGF were assessed by ELISA, RT-PCR, and Western blotting in human HSCs treated by IL-13, PGE2, and PGI2, respectively. At the same time, bridge assay and CCK8 assay were used to detect the cell proliferation and activity, PKC activity assay was used to test the activity of PKC, and PKC agonist and antagonist were used to verify the results obtained previously. RESULTS We found that IL-13, PGE2, and PGI2 significantly enhanced the expression of TGF-ß1 and PDGF in human HSCs, which also clearly improved the proliferation and cell activity of HSCs. Moreover, PKC activity was significantly increased following IL-13, PGE2, and PGI2 treatments. We also found that the expression of TGF-ß1 and PDGF, as well as the proliferation and cell activity of HSCs, were significantly enhanced by the PKC agonist phorbol 12-myristate 13-acetate (PMA), but suppressed by the PKC antagonist calphostin C. CONCLUSIONS We found that IL-13, PGE2, and PGI2 stimulated HSCs proliferation and secretion of TGF-ß1 and PDGF by activating PKC, which predicted their potential roles in hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Blotting, Western , Cell Proliferation , Cells, Cultured , Dinoprostone/metabolism , Epoprostenol/metabolism , Humans , Interleukin-13/metabolism , Platelet-Derived Growth Factor/metabolism , Protein Kinase C/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...