Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Funct ; 42(3): e4017, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603595

ABSTRACT

Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.


Subject(s)
Chromobox Protein Homolog 5 , Mitosis
2.
Inorg Chem ; 63(10): 4747-4757, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38412230

ABSTRACT

Low dimensional organic inorganic metal halide materials have shown broadband emission and large Stokes shift, making them widely used in various fields and a promising candidate material. Here, the zero-dimensional lead-free bromide single crystals (C6H14N)3Bi2Br9·H2O (1) and (C6H14N)3Sb3Br12 (2) were synthesized. They crystallized in the monoclinic crystal system with the space group of P21 and P21/n, respectively. Through ultraviolet-visible-near-infrared (UV-vis-NIR) absorption analysis, the band gaps of (C6H14N)3Bi2Br9·H2O and (C6H14N)3Sb3Br12 are found to be 2.75 and 2.83 eV, respectively. Upon photoexcitation, (C6H14N)3Bi2Br9·H2O exhibit broad-band red emission peaking at 640 nm with a large Stokes shift of 180 nm and a lifetime of 2.94 ns, and the emission spectrum of (C6H14N)3Sb3Br12 are similar to those of (C6H14N)3Bi2Br9·H2O. This exclusive red emission is ascribed to the self-trapping exciton transition caused by lattice distortion, which is confirmed through both experiments and first-principles calculations. In addition, due to the polar space group structure and the large spin-orbit coupling (SOC) associated with the heavy elements of Bi and Br of crystal 1, an obvious Rashba effect was observed. The discovery of organic inorganic metal bromide material provides a critical foundation for uncovering the connection between 0D metal halide materials' structures and properties.

3.
Materials (Basel) ; 15(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35329588

ABSTRACT

To study the mechanical properties of cement-graded crushed stone for use in the transition sections of intercity railways, the growth laws governing unconfined compressive strength, splitting strength and resilience modulus of cement-graded crushed stone and their influencing factors were studied by the vertical vibration compaction method (VVCM). The strength growth equations of cement-graded crushed stone are proposed, and strength prediction equations are established. The research shows the unconfined compressive strength, splitting strength and resilience modulus of cement-graded crushed stone with a strong interlocked skeleton density type (VGM-30) are significantly enhanced to 20, 20 and 17% higher, respectively, than those of standard cement-graded crushed stone. The growth law of mechanical properties of cement-graded crushed stone is similar, with the fastest growth occurring before 14 days, and the rate decreasing after 28 days. The strength growth tended to be stable after 90 days, increasing with the increase in curing time, compaction coefficient and cement dosage. The correlation coefficients (R2) of the strength growth prediction models were found to be 0.99, 0.97, and 0.99, respectively. These values can be used to accurately predict the strength growth curve. This paper verifies the superiority of VGM-30 gradation through laboratory tests, providing a reference for gradation selection in the construction of intercity railway transition sections.

4.
PLoS One ; 16(3): e0247599, 2021.
Article in English | MEDLINE | ID: mdl-33657170

ABSTRACT

The vertical vibration compaction method (VVCM), heavy compaction method and static pressure method were used to form phyllite specimens with different degrees of weathering. The influence of cement content, compactness, and compaction method on the mechanical properties of phyllite was studied. The mechanical properties of phyllite was evaluated in terms of unconfined compressive strength (Rc) and modulus of resilience (Ec). Further, test roads were paved along an expressway in China to demonstrate the feasibility of the highly weathered phyllite improvement technology. Results show that unweathered phyllite can be used as subgrade filler. In spite of increasing compactness, phyllite with a higher degree of weathering cannot meet the requirements for subgrade filler. With increasing cement content, Rc and Ec of the improved phyllite increases linearly. Rc and Ec increase by at least 15% and 17%, respectively, for every 1% increase in cement content and by at least 10% and 6%, respectively, for every 1% increase in compactness. The higher the degree of weathering of phyllite, the greater the degree of improvement of its mechanical properties.

5.
Materials (Basel) ; 13(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824550

ABSTRACT

Cement-modified loess has been used in the recent construction of an intercity high-speed railway in Xi'an, China. This paper studies the mechanical strength of cement-modified loess (CML) compacted by the vertical vibration compaction method (VVCM). First, the reliability of VVCM in compacting CML is evaluated, and then the effects of cement content, compaction coefficient, and curing time on the mechanical strength of CML are analyzed, establishing a strength prediction model. The results show that the correlation of mechanical strength between the CML specimens prepared by VVCM in the laboratory and the core specimens collected on site is as high as 83.8%. The mechanical strength of CML initially show linear growth with increasing cement content and compaction coefficient. The initial growth in CML mechanical strength is followed by a later period, with mechanical strength growth slowing after 28 days. The mechanical strength growth properties of the CML can be accurately predicted via established strength growth equations. The results of this study can guide the design and construction of CML subgrade.

SELECTION OF CITATIONS
SEARCH DETAIL
...