Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39057393

ABSTRACT

Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.

2.
J Fungi (Basel) ; 10(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38921366

ABSTRACT

The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen's sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity.

3.
Pathogens ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921802

ABSTRACT

Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 µmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65-3.3 µm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases.

4.
ACS Appl Mater Interfaces ; 16(23): 30185-30195, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38818828

ABSTRACT

Broadband near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) hold promising potential as next-generation compact, portable, and intelligent NIR light sources. Nonetheless, the lack of high-performance broadband NIR phosphors with an emission peak beyond 900 nm has severely hindered the development and widespread application of NIR pc-LEDs. This study presents a strategy for precise control of energy-state coupling in spinel solid solutions composed of MgxZn1-xGa2O4 to tune the NIR emissions of Cr3+ activators. By combining crystal field engineering and heavy doping, the Cr3+-Cr3+ ion pair emission from the 4T2 state is unlocked, giving rise to unusual broadband NIR emission spanning 650 and 1400 nm with an emission maximum of 913 nm and a full width at half-maximum (fwhm) of 213 nm. Under an optimal Mg/Zn ratio of 4:1, the sample achieves record-breaking performance, including high internal and external quantum efficiency (IQE = 83.9% and EQE = 35.7%) and excellent thermal stability (I423 K/I298 K = 75.8%). Encapsulating the as-obtained phosphors into prototype pc-LEDs yields an overwhelming NIR output power of 124.2 mW at a driving current of 840 mA and a photoelectric conversion efficiency (PCE) of 10.5% at 30 mA, rendering high performance in NIR imaging applications.

5.
Dalton Trans ; 53(9): 4214-4221, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38328962

ABSTRACT

Recently, short-wave infrared (SWIR) phosphor-converted light-emitting diodes (pc-LEDs) have garnered increased attention due to their widespread applications in night vision, biological imaging, and non-destructive testing. Nevertheless, the currently used SWIR phosphors suffer from poor thermal stability and low quantum efficiency. In this study, a finely tuned spinel-based solid solution, Mg0.5Zn0.5Ga2O4, is prepared to host Ni2+ to induce SWIR emission. Cr3+ is codoped as a sensitizer to bridge Cr3+ and Ni2+ ions, significantly enhancing blue light absorption and facilitating energy transfer (ET) to Ni2+ ions. The champion SWIR phosphor exhibits a broadband emission centered at 1304 nm with a full width at half maximum (FWHM) of 250 nm, achieving a near-unity internal quantum efficiency (IQE = 97.7%) and a good thermal stability (70.7%@423 K). The fabricated SWIR pc-LED device delivers a high SWIR output power of 39.9 mW at 360 mA, enabling its application in non-destructive imaging and testing.

6.
Int J Biol Macromol ; 254(Pt 3): 128071, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967595

ABSTRACT

Influenza remains a global health concern due to its potential to cause pandemics as a result of rapidly mutating influenza virus strains. Existing vaccines often struggle to keep up with these rapidly mutating flu viruses. Therefore, the development of a broad-spectrum peptide vaccine that can stimulate an optimal antibody response has emerged as an innovative approach to addressing the influenza threat. In this study, an immunoinformatic approach was employed to rapidly predict immunodominant epitopes from different antigens, aiming to develop an effective multiepitope influenza vaccine (MEV). The immunodominant B-cell linear epitopes of seasonal influenza strains hemagglutinin (HA) and neuraminidase (NA) were predicted using an antibody-peptide microarray, involving a human cohort including vaccinees and infected patients. On the other hand, bioinformatics tools were used to predict immunodominant cytotoxic T-cell (CTL) and helper T-cell (HTL) epitopes. Subsequently, these epitopes were evaluated by various immunoinformatic tools. Epitopes with high antigenicity, high immunogenicity, non-allergenicity, non-toxicity, as well as exemplary conservation were then connected in series with appropriate linkers and adjuvants to construct a broad-spectrum MEV. Moreover, the structural analysis revealed that the MEV candidates exhibited good stability, and the docking results demonstrated their strong affinity to Toll-like receptors 4 (TLR4). In addition, molecular dynamics simulation confirmed the stable interaction between TLR4 and MEVs. Three injections with MEVs showed a high level of B-cell and T-cell immune responses according to the immunological simulations in silico. Furthermore, in-silico cloning was performed, and the results indicated that the MEVs could be produced in considerable quantities in Escherichia coli (E. coli). Based on these findings, it is reasonable to create a broad-spectrum MEV against different subtypes of influenza A and B viruses in silico.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Toll-Like Receptor 4 , Influenza, Human/prevention & control , Escherichia coli , Molecular Docking Simulation , Epitopes, T-Lymphocyte/chemistry , Vaccines, Subunit , Epitopes, B-Lymphocyte , Computational Biology/methods
7.
Nanoscale ; 15(33): 13628-13634, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37526988

ABSTRACT

All-inorganic metal halide perovskite (MHP) materials have been widely studied because of their unique optoelectronic properties, whereas there has been little research reported on their X-ray afterglow imaging properties. Herein, we report the design and synthesis of Mn2+-doped hexagonal CsCdCl3 MHP crystals with excellent X-ray scintillation and X-ray induced afterglow. The orange emission from Mn2+ shows a red shift due to the strong interaction of the Mn2+-Mn2+ dimers formed at higher doping concentrations. The high-energy X-rays with higher electron filling capacity to feed the shallow (0.71 eV) and deep (0.90-1.08 eV) traps enable a long orange afterglow for more than 300 min. The afterglow emission can be rejuvenated effectively by 870 nm stimulus or heating even after 72 h of decay. Finally, we demonstrate the proof-of-concept applications of the fabricated flexible scintillator films for real-time online X-ray imaging with a spatial resolution of 12.2 lp mm-1, as well as time-lapse X-ray imaging recorded by a cell phone, which shows promise for being able to do offline late-time detection of X-ray afterglow imaging in the future.

8.
J Reprod Immunol ; 158: 103953, 2023 08.
Article in English | MEDLINE | ID: mdl-37209460

ABSTRACT

BACKGROUND: Regenerative medicine with peripheral blood mononuclear cell (PBMC) transplantation sheds light on the issue of premature ovarian insufficiency (POI). However, the efficiency of PBMC treatment in natural ovarian aging (NOA) remains unclear. METHODS: Thirteen-month-old female Sprague-Dawley (SD) rats were used to verify the NOA model. Seventy-two NOA rats were randomly divided into three groups: the NOA control group, PBMC group, and PBMC+platelet-rich plasma (PRP) group. PBMCs and PRP were transplanted by intraovarian injection. The effects on ovarian function and fertility were measured after transplantation. RESULTS: Transplantation of PBMCs could restore the normal estrous cycle, consistent with the recovery of serum sex hormone levels, increased follicle numbers at all stages, and restoration of fertility by facilitating pregnancy and live birth. Moreover, when combined with PRP injection, these effects were more significant. The male-specific SRY gene was detected in the ovary at all four time points, suggesting that PBMCs continuously survived and functioned in NOA rats. In addition, after PBMC treatment, the expression of angiogenesis-related and glycolysis-related markers in the ovaries was upregulated, which indicated that these effects were associated with angiogenesis and glycolysis. CONCLUSIONS: PBMC transplantation restores the ovarian functions and fertility of NOA rats, and PRP could enhance the efficiency. Increased ovarian vascularization, follicle production, and glycolysis are likely the major mechanisms.


Subject(s)
Platelet-Rich Plasma , Primary Ovarian Insufficiency , Pregnancy , Humans , Rats , Male , Female , Animals , Leukocytes, Mononuclear/metabolism , Rats, Sprague-Dawley , Granulocyte Colony-Stimulating Factor , Primary Ovarian Insufficiency/therapy , Platelet-Rich Plasma/metabolism
9.
Front Oncol ; 13: 1032364, 2023.
Article in English | MEDLINE | ID: mdl-37064114

ABSTRACT

Objective: This study was designed to assess ferroptosis regulator gene (FRG) expression patterns in patients with TNBC based on data derived from The Cancer Genome Atlas (TCGA). Further, it was utilized to establish a TNBC FRG signature, after which the association between this signature and the tumor immune microenvironment (TIME) composition was assessed, and relevant prognostic factors were explored. Methods: The TCGA database was used to obtain RNA expression datasets and clinical information about 190 TNBC patients, after which a prognostic TNBC-related FRG signature was established using a least absolute shrinkage and selection operator (LASSO) Cox regression approach. These results were validated with separate data from the Gene Expression Omnibus (GEO). The TNBC-specific prognostic gene was identified via this method. The STEAP3 was then validated through Western immunoblotting, immunohistochemical staining, and quantitative real-time polymerase chain reaction (RT-qPCR) analyses of clinical tissue samples and TNBC cell lines. Chemotherapy interactions and predicted drug sensitivity studies were investigated to learn more about the potential clinical relevance of these observations. Results: These data revealed that 87 FRGs were differentially expressed when comparing TNBC tumors and healthy tissue samples (87/259, 33.59%). Seven of these genes (CA9, CISD1, STEAP3, HMOX1, DUSP1, TAZ, HBA1) are significantly related to the overall survival of TNBC patients. Kaplan-Meier analyses and established FRG signatures and nomograms identified CISD1 and STEAP3 genes of prognostic relevance. Prognostic Risk Score values were positively correlated with the infiltration of CD4+ T cells (p = 0.001) and myeloid dendritic cells (p =0.004). Further evidence showed that STEAP3 was strongly and specifically associated with TNBC patient OS (P<0.05). The results above were confirmed by additional examinations of STEAP3 expression changes in TNBC patient samples and cell lines. High STEAP3 levels were negatively correlated with half-maximal inhibitory concentration (IC50) values for GSK1904529A (IGF1R inhibitor), AS601245 (JNK inhibitor), XMD8-85 (Erk5 inhibitor), Gefitinib, Sorafenib, and 5-Fluorouracil (P < 0.05) in patients with TNBC based on information derived from the TCGA-TNBC dataset. Conclusion: In the present study, a novel FRG model was developed and used to forecast the prognosis of TNBC patients accurately. Furthermore, it was discovered that STEAP3 was highly overexpressed in people with TNBC and associated with overall survival rates, laying the groundwork for the eventually targeted therapy of individuals with this form of cancer.

10.
ACS Appl Mater Interfaces ; 15(10): 13186-13194, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877169

ABSTRACT

The advent of near-infrared (NIR) afterglow in Cr3+-doped materials has stimulated considerable interest in technological applications owing to the sustainable emission of light with good penetrability. However, the development of Cr3+-free NIR afterglow phosphors with high efficiency, low cost, and precise spectral tunability is still an open question. Herein, we report a novel Fe3+-activated NIR long afterglow phosphor composed of Mg2SnO4 (MSO), in which Fe3+ ions occupy the tetrahedral [Mg-O4] and octahedral [Sn/Mg-O6] sites, giving rise to a broadband NIR emission spanning 720-789 nm. On account of energy-level alignment, the electrons released from the traps show a preferential return to the excited energy level of Fe3+ in tetrahedral sites through tunneling, leading to a single-peak NIR afterglow centered at 789 nm with a full-width at half-maximum (fwhm) of 140 nm. The high-efficiency NIR afterglow, showing a record persistent time lasting over 31 h among Fe3+-based phosphors, is demonstrated as a self-sustainable light source for night vision applications. This work not only provides a novel Fe3+-doped high-efficiency NIR afterglow phosphor for technological applications but also establishes practical guidance for rational tuning of afterglow emissions.

11.
Front Plant Sci ; 14: 1087496, 2023.
Article in English | MEDLINE | ID: mdl-36818834

ABSTRACT

Cucumber angular leaf spot (ALS) disease, caused by Pseudomonas amygdali pv. lachrymans (Pal), is an emerging disease with a high incidence that causes severe damage to cucumber worldwide. Bacterial aerosols play a crucial role in the epidemiology of greenhouse ALS disease. However, little is known about the influence of temperature and relative humidity (RH) on the dynamics of Pal in aerosols. A study was conducted to investigate the relationships between the concentration of Pal aerosols and their dependence on temperature and RH in aerosol chambers and greenhouses. The results demonstrated that temperature and RH are both significant factors influencing the release amount, survival time and infectivity of Pal in aerosols, while RH has a greater influence on particle size than temperature across the range of conditions tested. The release amount and survival time of Pal in aerosols under high RH (95%) and low temperature (≤ 25°C) conditions were significantly higher than those under low RH (35%) and high temperature (35°C) conditions. The highest release amount of Pal aerosol (96 CFU/m3) and highest survival rate (98.41%) were found at 18°C and 95% RH, while the highest disease index (DI = 60.9) caused by Pal aerosol was found at 25°C and 95% RH. In addition, Pal aerosols presented a larger diameter (4.7->7.0 µm) under high RH (95% RH) than under dry conditions (≤ 65% RH). These findings will play a crucial role in elucidating the influence of environmental parameters on the dynamics and transmission of Pal in aerosols. Based on our findings, preliminary recommendations for controlling airborne Pal spread involve controlling air temperature and RH, which will contribute to the effective alleviation and control of cucumber ALS disease.

12.
J Obstet Gynaecol Res ; 49(1): 243-252, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36281209

ABSTRACT

AIM: The chronic endometritis (CE) prevalence in people experiencing infertility is 2.8-56.8%, pregnancy rates in patients with infertility increase after hysterosalpingography with oil-based contrast, but the effect and mechanism are not clear. Here, we analyzed the effects of intrauterine ethiodized poppyseed oil (EPO) bathing on a rat model of CE and the possible underlying mechanism. METHODS: CE rats were induced by lipopolysaccharide (LPS) exposure, and rats were subjected to intrauterine bathing with EPO or phosphate-buffered saline (PBS) after model verification. Serum and uterus levels of IFN-γ, IL-4, TNF-α, and IL-1ß were detected by ELISA kit, and the number of CD138+ and CD68+ cells and uterine IFN-γ, IL-4, TNF-α, IL-1ß, and NF-κB P65 expression were detected by immunohistochemistry after bathing. RESULTS: LPS exposure induced the typical CE phenotype with CD138+ phagocyte infiltration of the endometrial stroma. Compared with PBS bathing, bathing with EPO in CE rats showed decreases in the CD138+ and CD68+ cells populations and significant decreases in serum and uterine IFN-γ levels, moreover, uterine IL-4 levels were slightly higher, and the IFN-γ/IL-4(Th1/Th2-type cytokine ratio) in the uterus was significantly lower. Local IFN-γ, TNF-α, and NF-κB P65 expression in the endometrium was significantly downregulated, while IL-4 expression was upregulated. CONCLUSION: Intrauterine oil-based contrast bathing significantly alleviated local inflammation in the rat CE model by downregulating NF-κB P65 expression, reducing IFN-γ (Th1), increasing IL-4 levels (Th2) in the endometrium, and regulating the Th1/Th2-type cytokine trends toward Th2.


Subject(s)
Endometritis , Infertility , Humans , Pregnancy , Female , Rats , Animals , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Th1 Cells/metabolism , Th2 Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Hysterosalpingography , Interleukin-4/metabolism , Interleukin-4/pharmacology , Chronic Disease , Inflammation/metabolism , Infertility/metabolism
13.
Plant Dis ; 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167517

ABSTRACT

Virginia creeper (Parthenocissus quinquefolia [L.] Planch.) belongs to the genus of Parthenocissus and Vitaceae family, which is very common in vineyards and where wild grape occurs (Bergh et al., 2011). In September of 2021, a severe white rot disease was observed on Virginia creeper around the vineyard of wine grapevine (Cabernet Sauvignon) located in Penglai city (37º 75'38" N, 120º 84'28" E), Shandong province of China. The disease incidence was about 75%, and infected leaf of Virginia creeper exhibited irregular necrotic lesion with brown center, and most lesion occurred on leaf margin, black pycnidia were also observed on the infected leaf at the late stage of infection. To determine the causal agent, symptomatic leaves with typical lesions were cut into small pieces (5 mm × 3 mm), surface sterilized with 75% ethanol for 1 min, followed by three times rinsed in sterile water. Leaf sections were plated onto potato dextrose agar (PDA) medium and incubated at 28°C for 3 days. Totally, five isolates (referred to as JD01, JD07, JD09, JD12 and JD16) were collected and transferred on to fresh PDA medium for incubation at 28°C. Seven days later, colonies on PDA plates had crenulated edges with concentric rings, the upper surface of colonies was mostly flat and white with many pycnidia. The conidia were hyaline at immature and became brown later, spherical or ellipsoid, aseptate, and 7.92 ± 1.20 µm × 5.18 ± 0.61 µm (n=50), length : width ratio is nearly 2. Morphologically, the isolates were identified as Coniella vitis (Chethana et al., 2017). Further to confirm the fungal species, the internal transcribed spacer region (ITS) of the ribosomal RNA gene, large subunit rRNA gene (LSU) and the translation elongation factor 1-alpaha gene (TEF1-α) were amplified using primers ITS1/ ITS4, LR7/ LROR, and TEF1- 728F/ TEF1- 986R (Chethana et al., 2017; Raudabaugh et al., 2018). The amplification products were sequenced and deposited in GenBank database. The sequences were compared to type sequences in GenBank. The results showed that ITS (GenBank accession numbers ON329769, ON329770, ON329771, ON329772 and ON329773), LSU (ON358423,ON358424, ON358425, ON358426 and ON358427) and TEF (ON297671, ON229071, ON229072, ON229073 and ON297672) sequences of the five isolates were 99.66%, 96.90% and 98.79% identical with the sequences data from C. vitis isolates in GeneBank (MFLUCC 18-0093, JZB3700020 and MFLUCC 18-0093, respectively). Furthermore, concatenated sequences of the three genes (ITS, LSU and TEF) were used to conduct a phylogenetic tree using maximum likehood MEGA-X (Raudabaugh et al., 2018). The phylogenetic analysis showed that the five isolates (JD01, JD07, JD09, JD12 and JD16) belong to C. vitis clade among the 41strains of Coniella spp. In the pathogenicity tests, detached leaves of Virginia creeper (1-year-old) were inoculated with mycelia plugs (5 mm diameter) (form 3-day-old of isolate JD07 culture), and control were inoculated with PDA plugs (5 mm diameter). Virginia creeper live plants (1-year-old) were inoculated with conidial suspension (2.5×106 spores/ml) of the isolate JD07 of one week old, and control plants were inoculated with sterile water. All treated Virginia creeper plants (detached leaves) were placed in a greenhouse maintained at 28°C and 95% relative humidity. Virginia creeper plants (detached leaves) inoculated with the conidial suspension (fungal mycelia) had brown lesion on leaves, the disease symptoms were similar to those observed in field. No such symptoms were observed on control plants (detached leaves). The pathogen was reisolated from inoculated Virginia creeper plants and re-identified, thus fulfilling Koch's postulates. C. vitis had been reported to cause grape white rot in China (Chethana et al., 2017). Virginia creeper, as an excellent host of C. vitis, will increase the transmission risk of the pathogens. To our knowledge, this is the first report of C. vitis causing white rot on Virginia creeper, and this finding will provide useful information for developing effective control strategies for white rot disease.

14.
Reprod Biomed Online ; 45(6): 1275-1283, 2022 12.
Article in English | MEDLINE | ID: mdl-36151013

ABSTRACT

RESEARCH QUESTION: What are the probability and underlying influence factors of intermittent ovarian function recovery in patients with idiopathic premature ovarian insufficiency (POI)? DESIGN: This was a retrospective cohort study conducted in tertiary hospitals recruiting 162 patients diagnosed with POI based on European Society of Human Reproduction and Embryology criteria from June 2015 to March 2022. The incidence of intermittent ovarian function recovery was evaluated, and the possible influence factors were investigated by univariate and multivariate analysis. RESULTS: Among 162 POI patients, 48 (29.63%) presented intermittent ovarian function recovery, and 11 (6.79%) were natural pregnancies; 114 (70.37%) patients failed to show ovarian function recovery. No association was found between initial clinical features and intermittent ovarian function recovery. In contrast, the variables of FSH, LH, oestradiol, anti-Müllerian hormone (AMH), ovarian volume, passive smoking and weekly exercise time after diagnosis were correlated with intermittent ovarian function recovery in patients with POI and further analysis indicated that FSH concentration at diagnosis (odds ratio [OR] 0.964, 95% confidence interval [CI] 0.934-0.995, P = 0.023), passive smoking (OR 0.369, 95% CI 0.141-0.963, P = 0.042) and weekly exercise time after diagnosis (OR 5.592, 95% CI 1.83-17.088, P = 0.003) were influence factors of intermittent ovarian function recovery in POI patients. CONCLUSIONS: The incidence of intermittent ovarian function recovery in patients with idiopathic POI was 29.63%, and the natural pregnancy rate was 6.79%. Lower FSH concentration at diagnosis, no passive smoking and a weekly exercise time ≥1.5 h after the diagnosis may be beneficial for intermittent ovarian function recovery in POI patients.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Female , Pregnancy , Humans , Follicle Stimulating Hormone , Retrospective Studies , Recovery of Function , Odds Ratio
15.
Front Microbiol ; 13: 975344, 2022.
Article in English | MEDLINE | ID: mdl-36160187

ABSTRACT

Paenibacillus peoriae is a plant growth-promoting rhizobacteria (PGPR) widely distributed in various environments. P. peoriae ZBFS16 was isolated from the wheat rhizosphere and significantly suppressed grape white rot disease caused by Coniella vitis. Here, we present the complete genome sequence of P. peoriae ZBFS16, which consists of a 5.83 Mb circular chromosome with an average G + C content of 45.62%. Phylogenetic analyses showed that ZBFS16 belongs to the genus P. peoriae and was similar to P. peoriae ZF390, P. peoriae HS311 and P. peoriae HJ-2. Comparative analysis with three closely related sequenced strains of P. peoriae identified the conservation of genes involved in indole-3-acetic acid production, phosphate solubilization, nitrogen fixation, biofilm formation, flagella and chemotaxis, quorum-sensing systems, two-component systems, antimicrobial substances and resistance inducers. Meanwhile, in vitro experiments were also performed to confirm these functions. In addition, the strong colonization ability of P. peoriae ZBFS16 was observed in soil, which provides it with great potential for use in agriculture as a PGPR. This study will be helpful for further studies of P. peoriae on the mechanisms of plant growth promotion and biocontrol.

16.
J Colloid Interface Sci ; 624: 725-733, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35696790

ABSTRACT

Metal halide perovskites (MHPs) have sparked ongoing research interest due to their high-performance optoelectronic properties. However, blue-light excitable near-infrared (NIR) emitting MHPs is still inaccessible and the achievement of robust thermal-quenching resistance so far remains a huge challenge. In this work, we report on the synthesis of lead-free all-inorganic Mn2+-based perovskite-like single crystals using the designed nonstoichiometric precursor ratio. The special crystal structure endows Mn2+ with efficient blue light excitation and red emission, which enables the capabilities of a good matching with commercial blue LED chips and an efficient sensitization for Ln3+ emitters. The incorporations of Yb3+, Er3+, and Ho3+ functionalize the CsMnCl3 single crystals with multiple NIR emissions by virtue of feeding the energy from Mn2+ to Ln3+ via multi-channels. Most remarkable is the achievement of the robust thermal-quenching resistance, exhibiting (near-) zero-thermal-quenching and even anti-thermal quenching, of the Ln3+ NIR emissions above room temperature. Finally, as a proof-of-concept study, a prototype of an NIR-LED device was fabricated. This work not only provides a general strategy to unlock the blue-light excitable NIR emission from f-f transitions of Ln3+ ions, and a fundamental understanding of the sensitization-activation mechanisms in Ln3+-functionalized manganese (Ⅱ)-based perovskite-like phosphor, but also endows the MHPs with optical functionalities for the future high-potential applications, such as NIR phosphor-converted LEDs, and optical telecommunication.


Subject(s)
Lanthanoid Series Elements , Calcium Compounds , Lanthanoid Series Elements/chemistry , Light , Oxides , Titanium
17.
Pathogens ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215191

ABSTRACT

Grape white rot caused by Coniella vitis is prevalent in almost all grapevines worldwide and results in a yield loss of 10-20% annually. Bacillus velezensis is a reputable plant growth-promoting bacterial. Strain GSBZ09 was isolated from grapevine cv. Red Globe (Vitis vinifera) and identified as B. velezensis according to morphological, physiological, biochemical characteristics and a multilocus gene sequence analysis (MLSA) based on six housekeeping genes (16S rRNA, gyrB, rpoD, atpD, rho and pgk). B. velezensis GSBZ09 was screened for antifungal activity against C. vitis under in vitro and in vivo conditions. GSBZ09 presented broad spectrum antifungal activity and produced many extracellular enzymes that remarkably inhibited the mycelial growth and spore germination of C. vitis. Furthermore, GSBZ09 had a high capacity for indole-3-acetic acid (IAA) production, siderophore production, and mineral phosphate solubilization. Pot experiments showed that the application of GSBZ09 significantly decreased the disease index of the grape white rot, directly promoted the growth of grapes, and upregulated defense-related enzymes. Overall, the features of B. velezensis GSBZ09 make it a potential strain for application as a biological control agent against C. vitis.

18.
J Appl Microbiol ; 132(5): 3717-3734, 2022 May.
Article in English | MEDLINE | ID: mdl-35138009

ABSTRACT

AIMS: Bacterial soft rot caused by Pectobacterium brasiliense (Pbr) has resulted in severe economic losses of cucumber production in northern China. Quantitative reverse transcription PCR (RT-qPCR) is widely used to determine the fold change in the expression of genes of interest, and an appropriate reference gene played a critical role in the evaluation of genes expression. However, the suitable reference genes for transcript normalization during the interaction between cucumber and Pbr have not yet been systematically validated. In this study, we aimed to identify the suitable reference genes for accurate and reliable normalization of cucumber and Pbr RT-qPCR data. METHODS AND RESULTS: We selected 14 candidate reference genes for cucumber and 10 candidate reference genes for Pbr were analysed by using four algorithms (the deltaCt method, BestKeeper, NormFinder and geNorm). Furthermore, five genes in cucumber involved in plant resistance and five genes in Pbr related to the virulence were selected to confirm the reliability of the reference genes by RT-qPCR. CsARF (ADP-ribosylation factor 1) and pgi (glucose-6-phosphate isomerase) were suggested as the most suitable reference genes for cucumber and Pbr respectively. CONCLUSION: Our results suggested that CsARF (ADP-ribosylation factor 1) and pgi (glucose-6-phosphate isomerase) could be as the reference genes to normalize expression data for cucumber and Pbr during the process of pathogen-host interaction respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first systematic study of the optimal reference genes specific to cucumber and Pbr, which could help advance the molecular interactions research in Cucurbitaceae vegetables and Pectobacterium species pathosystems.


Subject(s)
Cucumis sativus , Pectobacterium , ADP-Ribosylation Factor 1 , Cucumis sativus/genetics , Gene Expression , Gene Expression Profiling/methods , Glucose-6-Phosphate Isomerase , Real-Time Polymerase Chain Reaction/methods , Reference Standards , Reproducibility of Results
19.
Biol Reprod ; 106(5): 992-999, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35044439

ABSTRACT

In the endometrium of women with recurrent implantation failure and unexplained recurrent miscarriage, the expression levels of homeobox A10 and E-cadherin were positively correlated. To explore whether homeobox A10 regulates E-cadherin during endometrial receptivity establishment, Ishikawa and RL95-2 cells were transfected with target-specific small interfering RNA (siRNA) and overexpression plasmid of homeobox A10. The expression levels of homeobox A10 and E-cadherin were measured by western blot and quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Attachment assay of JEG-3 spheroids to endometrial cells were conducted to explore the adhesive functions after homeobox A10 interfered. Chromatin immunoprecipitation assays and dual luciferase reporter were used to investigate the regulatory mechanism of homeobox A10. The CD1 mice were transfected with si-homeobox A10 to confirm these results in vivo. In Ishikawa and RL95-2 cells, the expression of E-cadherin was positively correlated with homeobox A10 when it was silenced/overexpressed. Consistently, the adhesion of endometrial epithelium cells and trophoblast cells was inhibited after homeobox A10 was silenced, and exogenous restoration of E-cadherin expression reversed this effect to some extent. Homeobox A10 regulates the expression of E-cadherin by directly binding to a conserved motif (TGTACTAAAAA) located in the E-cadherin promoter region. In addition, after knockdown of homeobox A10 in CD1 mice, both the implantation and live birth rates were decreased. In conclusion, homeobox A10 can bind to the E-cadherin promoter region and directly regulate its expression, thereby improving endometrial receptivity and subsequently increasing the embryo adhesion and implantation.


Subject(s)
Antigens, CD , Cadherins , Embryo Implantation , Endometrium , Homeobox A10 Proteins , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Line, Tumor , Embryo Implantation/physiology , Endometrium/metabolism , Female , Homeobox A10 Proteins/genetics , Humans , Mice , RNA, Small Interfering/genetics
20.
ACS Appl Mater Interfaces ; 14(3): 4265-4275, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35025207

ABSTRACT

Broadband shortwave infrared (SWIR) light-emitting diodes (LEDs), capable of advancing the next-generation solid-state smart invisible lighting technology, have sparked tremendous interest and will launch ground-breaking spectroscopy and instrumental applications. Nevertheless, the device performance is still suppressed by the low quantum efficiency and limited emission bandwidth of the critical phosphor layer. Herein, we report a high-performance Ni2+-doped garnet solid-solution broadband SWIR emitter centered at ∼1450 nm with a large full-width at half-maximum of ∼300 nm, thereby fabricating, for the first time, a directly excited Ni2+-doped garnet solid-solution phosphor-converted broadband SWIR LED device. A synergetic enhancement strategy, adding a fluxing agent and a charge compensator simultaneously, is proposed to deliver a more than 20-fold increase of the SWIR emission intensity and nearly 2-fold improvement of the thermal quenching behavior. The site occupation and mechanism behind the synergetic enhancement strategy are elucidated by a combination of experimental study and theoretical calculation. A prototype of the SWIR LED with a radiation flux of 1.25 mW is fabricated and utilized as an invisible SWIR light source to demonstrate the SWIR spectroscopy applications. This work not only opens a window to explore novel broadband SWIR phosphors but also provides a synergetic strategy to remarkably improve the performance of artificial SWIR LED light sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...