Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(10): e23668, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742811

ABSTRACT

Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.


Subject(s)
Cyclin-Dependent Kinase 5 , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice, Inbred C57BL , MicroRNAs , Mitochondria , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Mitochondria/metabolism , Male , Humans , Diabetes Mellitus, Experimental/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , Apoptosis , Glucose
2.
J Chromatogr A ; 1722: 464911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626541

ABSTRACT

In this study, we have synthesised a chiral l-hyp-Ni/Fe@SiO2 composite as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) for the first time. This was achieved by coating two-dimensional (2D) chiral metal-organic framework nanosheets (MONs) l-hyp-Ni/Fe onto the surface of activated SiO2 microspheres using the "wrapped in net" method. The separation efficiency of the l-hyp-Ni/Fe chromatographic column was systematically evaluated in normal-phase HPLC (NP-HPLC) and reversed-phase HPLC (RP-HPLC) configurations, employing various racemates as analytes. The findings revealed that 16 chiral compounds were separated using NP-HPLC, and five were separated using RP-HPLC, encompassing alcohols, amines, ketones, esters, alkanes, ethers, amino acids and sulfoxides. Notably, the resolution (Rs) of nine chiral compounds exceeded 1.5, indicating baseline separation. Furthermore, the resolution performance of the l-hyp-Ni/Fe@SiO2-packed column was compared with that of Chiralpak AD-H. It was observed that certain enantiomers, which either could not be resolved or were inadequately separated on the Chiralpak AD-H column, attained separation on the 2D chiral MONs column. These findings suggest a complementary relationship between the two columns in racemate separation, with their combined application facilitating the resolution of a broader spectrum of chiral compounds. In addition, baseline separation was achieved for five positional isomers on the l-hyp-Ni/Fe@SiO2-packed column. The effects of the analyte mass and column temperature on the resolution were also examined. Moreover, during HPLC analysis, the l-hyp-Ni/Fe columns demonstrated commendable repeatability, stability and reproducibility in enantiomer separation. This research not only advances the utilisation of 2D chiral MONs as CSPs but also expands their applications in the separation sciences.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Metal-Organic Frameworks/chemistry , Stereoisomerism , Nanostructures/chemistry , Iron/chemistry , Nickel/chemistry
3.
Mikrochim Acta ; 191(5): 281, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649632

ABSTRACT

Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m-1 for (4-fluorophenyl)ethanol and 18,900 plates m-1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.

4.
J Am Chem Soc ; 146(11): 7594-7604, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38462726

ABSTRACT

The preservation of chirality during a transformation process, known as the "chiral memory" effect, has garnered significant attention across multiple research disciplines. Here, we first report the retention of the original chiral structure during dynamic covalent chemistry (DCC)-induced structural transformation from porous organic cages into covalent organic frameworks (COFs). A total of six two-dimensional chiral COFs constructed by entirely achiral building blocks were obtained through the DCC-induced substitution of chiral linkers in a homochiral cage (CC3-R or -S) using achiral amine monomers. Homochirality of these COFs resulted from the construction of 3-fold-symmetric benzene-1,3,5-methanimine cores with a propeller-like configuration of one single-handedness throughout the cage-to-COF transformation. The obtained chiral COFs can be further utilized as fluorescence sensors or chiral stationary phases for gas chromatography with high enantioselectivity. The present study thus highlighted the great potential to expand the scope of functional chiral materials via DCC-induced crystal-to-crystal transformation with the chiral memory effect.

5.
FASEB J ; 38(4): e23481, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334430

ABSTRACT

Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.


Subject(s)
Pluripotent Stem Cells , Animals , Swine , Lung/metabolism , Organoids/metabolism , Cell Differentiation , Epithelial Cells/metabolism
6.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097188

ABSTRACT

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Subject(s)
Macrophages, Alveolar , Pluripotent Stem Cells , Swine , Animals , Endocytosis , Hematopoiesis/drug effects , Lipopolysaccharides/pharmacology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Mesoderm/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Porcine respiratory and reproductive syndrome virus/physiology , Signal Transduction/drug effects , Swine/virology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Time Factors
7.
J Chromatogr A ; 1711: 464444, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37837712

ABSTRACT

In this study, a new chiral stationary phase (CSP) was fabricated by covalent bonding of a [4+6]-type homochiral porous organic cage (POC) CC19-R onto thiolated silica via a thiol-ene click reaction. The CC19-R was synthesized via Schiff-base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde and (1R, 2R)-(-)-1,2-diaminocyclohexane. The enantioseparation capability of the resulting CC19-R-based CSP was systematically evaluated upon separating various chiral compounds or chiral pharmaceuticals in normal phase HPLC (NP-HPLC) and reversed phase HPLC (RP-HPLC), including alcohols, organic acids, ketones, diols, esters, and amines. Fifteen racemates were enantioseparated in NP-HPLC and 11 racemates in RP-HPLC. Some racemates have been well separated, such as 4-chlorobenzhydrol, cetirizine (in the form of dihydrochloride), 1,2-diphenyl-1,2-ethanediol, and 3-(benzyloxy)propane-1,2-diol whose resolution values reached 3.66, 4.23, 6.50, and 3.50, respectively. When compared with a previously reported chiral POC-based column (NC1-R column), eight racemates were not separated on the NC1-R column in NP-HPLC and five racemates were not separated in RP-HPLC, but were well resolved on this column, revealing that the enantioselectivity and separable range of chiral POCs-type columns could be significantly widened using this fabricated CC19-R column. Moreover, the resolution performance of the CC19-R column was also compared with commercial Chiralpak AD-H [CSP: Amylose tris(3,5-dimethylphenylcarbamate)] and Chiralcel OD-H [CSP: Cellulose tris(3,5-dimethylphenylcarbamate)] columns. The column also can separate some racemates that could not be separated or not well be separated by the two commercial columns, showing its good complementarity to the two commercial columns on chiral separation. In addition, the column also had good stability and reproducibility with the relative standard deviation (n = 5) of the retention time and resolution lower than 1.0% and 1.8%, respectively, after it had undergone multiple injections (100, 200, 300, and 400 times). This work indicated that the features of good resolution ability and simple synthesis methods using with this POC-based CSP provided chiral POCs with potential application prospects in HPLC racemic separation.


Subject(s)
Click Chemistry , Sulfhydryl Compounds , Chromatography, High Pressure Liquid/methods , Porosity , Reproducibility of Results , Stereoisomerism
8.
Se Pu ; 41(10): 929-936, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875415

ABSTRACT

Porous organic cages (POCs) are a unique type of microporous materials composed of discrete molecules with internal cavities that are accessible to various compounds. In this study, a prismatic chiral POC with good thermochemical stability was synthesized by condensing (1R,2R)-diaminocyclohexane and 3,3',5,5'-teturonic-4,4'-biphenediol via the Schiff base reaction and characterized by proton nuclear magnetic resonance spectroscopy, infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy. The IR spectrum of the POC revealed a strong characteristic absorption peak at 1635 cm-1, indicating that it formed imine bonds (C=N). The absorption peak at 3425 cm-1 was attributed to the stretching vibrations of -OH, the absorption peaks at 2925 and 2858 cm-1 were attributed to the stretching vibrations of N=C-H and C-H, and the absorption peaks at 1446 and 1383 cm-1 were attributed to the stretching vibrations of C=C-H and C=C in the benzene ring. High-resolution mass spectral analysis of the POC showed a molecular ion peak at m/z 1363.7228, indicating its successful synthesis. TGA was performed from 25 to 800 ℃ at a rate of 10 ℃/min, and the results of this analysis showed that the POC was stable up to approximately 300 ℃. The POC was dissolved in dichloromethane and uniformly coated on the inner wall of a quartz capillary via the dynamic coating method to prepare a capillary electrochromatographic column. The experimental results revealed that the chiral electrochromatographic column could not only resolve ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol but also separate the isomers of o-, m-, and p-toluidine and o-, m-, and p-chloroaniline, indicating its good chiral separation ability. Investigation of the optimal separation conditions for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol revealed that the voltage, buffer solution concentration, and pH significantly affected their separation degree. In particular, the optimal separation voltage for ofloxacin, Troger's base, and 2-amino-1-butanol was 15 kV, while that for 1-phenyl-1-amyl alcohol was 17 kV. The optimal buffer concentration and pH for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol were 0.100 mol/L and 7.5. Under optimal chromatographic conditions, the resolution values for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-pentanol were 1.80, 3.33, 1.69, and 1.18, respectively. The results collectively demonstrate that the prepared POC may serve as a good chiral stationary phase for capillary electrochromatography with a certain chiral resolution ability and has good application prospects in chromatographic separation.

9.
J Sep Sci ; 46(18): e2300376, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37525411

ABSTRACT

A chiral pillar[3]trianglimine (C60 H72 N6 O6 ) with a deep cavity has been developed as a chiral selector and bonded to thiolated silica by thiol-ene click reaction to fabricate a novel chiral stationary phase for enantioseparation in high-performance liquid chromatography. The enantioseparation performance of the fabricated chiral stationary phase has been evaluated by separating various racemic compounds, including alcohols, esters, amines, ketones, amino acids, and epoxides, in both normal-phase and reversed-phase elution modes. In total, 14 and 17 racemates have been effectively separated in these two separation modes, respectively. In comparison with two widely used chiral columns (Chiralcel OD-H and Chiralpak AD-H), our novel chiral stationary phase offered good chiral separation complementarity, separating some of the tested racemates that could not be separated or were only partially separated on these two commercial columns. The influences of analyte mass, mobile phase composition, and column temperature on chiral separation have been investigated. Good repeatability, stability, and column-to-column reproducibility of the chiral stationary phase for enantioseparation have been observed. After the fabricated column had been eluted up to 400 times, the relative standard deviations (n = 5) of resolution (Rs) and retention time of the separated analytes were < 0.39% and < 0.20%, respectively. The relative standard deviations (n = 3) of Rs and retention time for column-to-column reproducibility were < 4.6% and < 5.2%, respectively. This study demonstrated that the new chiral stationary phase has great prospects for chiral separation in high-performance liquid chromatography.

10.
Anal Chem ; 95(35): 13289-13296, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37615071

ABSTRACT

Metallacycles are a novel class of supramolecular materials with circular structures, internal cavities, and abundant host-guest chemical properties that have exhibited good application prospects in many fields. However, to the best of our knowledge, no research on the use of metallacycles as stationary phases for gas chromatographic (GC) separations has been published yet. In this work, we report for the first time the use of a homochiral metallacycle, [ZnCl2L]2, as a stationary phase for GC separations. [ZnCl2L]2 was synthesized by reaction of (S)-(1-isonicotinoylpyrrolidin-2-yl)methyl-isonicotinate (L) with ZnCl2 via coordination-driven self-assembly. The [ZnCl2L]2-coated column displayed an excellent separation performance not only of organic isomers but also of racemic compounds. Sixteen racemates (including alcohols, esters, amino acid derivatives, ethers, organic acids, and epoxides) and 21 isomeric compounds (including positional, structural, and cis/trans-isomers) were well separated on the [ZnCl2L]2-coated column. Impressively, some racemates were resolved with high resolution values (Rs), including 1,2-butanediol diacetate (Rs = 25.86), ethyl 3-hydroxybutyrate (Rs = 20.97), 1,3-butanediol diacetate (Rs = 18.09), and threonine derivative (Rs = 18.61). Compared with the commercial ß-DEX 120 column for separation of the tested racemates, the [ZnCl2L]2-coated column exhibited good enantioseparation complementarity, enabling separation of some racemates that could not be separated, or were not well resolved, by the ß-DEX 120 column. In addition, many organic mixtures, such as n-alkanes, alkylbenzenes, n-alcohols, and a Grob test mixture, were also well separated on the [ZnCl2L]2-coated column. The column also has good reproducibility and thermal stability on separation. This work not only reveals the great potential of metallacycles for GC separations but also opens up a new application of metallacycles in separation science.

11.
J Am Chem Soc ; 145(34): 18956-18967, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37596711

ABSTRACT

The separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, ß-cyclodextrin (ß-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, ß-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges. Recently, covalent organic frameworks (COFs) with highly ordered nanopores are emerging as promising CSPs for enantioseparations, but their practical applications are still hampered by the difficulty of monomer and COF synthesis. Herein, two ß-CD-driven COFs are synthesized via a fast and facile plasma-induced polymerization combined postsynthesis modification strategy. The precisely defined COF channels enhanced the accessibility of the accommodated ß-CD to the analytes and acted as robust protective barriers to safeguard the ß-CD from harsh environments. Therefore, the ß-CD-modified COFs can be potentially general CSPs for extensive enantioseparation in both gas chromatography and high-performance liquid chromatography, and a wide range of racemates were separated. Compared to the commonly employed commercial chiral columns, these COF-based columns exhibited comparable resolution capability and superior application versatility. This work integrates the advantages and overcomes the defects of COFs and ß-CD, thus advancing COFs as platforms for chiral selector modification and giving great promise for practical chromatographic enantioseparation.

12.
Anat Sci Educ ; 16(6): 1200-1208, 2023.
Article in English | MEDLINE | ID: mdl-37328430

ABSTRACT

In recent years, China has been facing a shortage of cadavers for teaching medical students. A better comprehension of the attitudes and factors influencing the general public's opinion toward body donation would be invaluable for planning and implementing body donation programs. Although altruistic attitude and attitudes toward death have received considerable attention in recent years globally, they have been largely understudied in China. Herein, the potential relationship between attitudes toward altruism and death, and willingness toward whole-body donation in a sample of university students in Changsha City in China were analyzed. A multi-stage sampling method was adopted to recruit 478 Chinese college students from two universities: the Medical College of Hunan Normal University (n = 272) and the College of Civil engineering of Hunan University (n = 206). The study participants were assessed by a sociodemographic questionnaire, the Death Attitude Profile-Revised (DAP-R-C) questionnaire, and the altruism scale. Moreover, Chinese University students demonstrated moderate willingness to donate their bodies. The mean score of the willingness of study participants to donate their bodies was 3.138 ± 0.933 (5-point Likert scale). Acceptance toward death, gender, and type of university were positive factors, whereas fear of death negatively affected willingness toward body donation. Regression analysis showed that factors, including gender (ß = 0.237), type of university (ß = 0.193), natural acceptance (ß = 0.177), and fear of death (ß = -0.160) influenced willingness toward body donation. Overall, the present study provides hitherto undocumented evidence on factors influencing willingness toward body donation among Chinese university students, which can assist in designing public awareness programs for encouraging body donation.


Subject(s)
Anatomy , Students, Medical , Tissue and Organ Procurement , Humans , Altruism , Anatomy/education , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires , China , Tissue Donors
13.
Mikrochim Acta ; 190(6): 238, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222823

ABSTRACT

The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (ß-CD-COF@SiO2, CTpBD@SiO2, and MDI-ß-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m-1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.

14.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049997

ABSTRACT

Porous organic cages (POCs) are a new subclass of porous materials, which are constructed from discrete cage molecules with permanent cavities via weak intermolecular forces. In this study, a novel chiral stationary phase (CSP) has been prepared by chemically binding a [4 + 6]-type chiral POC (C120H96N12O4) with thiol-functionalized silica gel using a thiol-ene click reaction and applied to HPLC separations. The column packed with this CSP presented good separation capability for chiral compounds and positional isomers. Thirteen racemates have been enantioseparated on this column, including alcohols, diols, ketones, amines, epoxides, and organic acids. Upon comparison with a previously reported chiral POC NC1-R-based column, commercial Chiralpak AD-H, and Chiralcel OD-H columns, this column is complementary to these three columns in terms of its enantiomeric separation; and can also separate some racemic compounds that cannot be separated by the three columns. In addition, eight positional isomers (iodoaniline, bromoaniline, chloroaniline, dibromobenzene, dichlorobenzene, toluidine, nitrobromobenzene, and nitroaniline) have also been separated. The influences of the injection weight and column temperature on separation have been explored. After the column has undergone multiple injections, the relative standard deviations (RSDs) for the retention time and selectivity were below 1.0 and 1.5%, respectively, indicating the good reproducibility and stability of the column for separation. This work demonstrates that POCs are promising materials for HPLC separation.

15.
ACS Appl Mater Interfaces ; 15(13): 16953-16962, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36867759

ABSTRACT

Artificial camouflage has garnered long-standing interest in both academia and industry. The metasurface-based cloak has attracted much attention due to the powerful capability of manipulating the electromagnetic wave, convenient multifunctional integration design, and easy fabrication. However, existing metasurface-based cloaks tend to be passive and of single function and monopolarization, which cannot meet the requirement of applications in ever-changing environments. So far, it is still challenging to realize a reconfigurable full-polarization metasurface cloak with multifunctional integration. Herein, we proposed an innovative metasurface cloak, which can simultaneously realize dynamic illusion effects at lower frequencies (e.g., 4.35 GHz) and specific microwave transparency at higher frequencies (e.g., X band) for communication with the outside environment. These electromagnetic functionalities are demonstrated by both numerical simulations and experimental measurements. The simulation and measurement results agree well with each other, indicating that our metasurface cloak can generate various electromagnetic illusions for full polarizations as well as a polarization-insensitive transparent window for the signal transmission to enable the communication between the cloaked device and the outside environment. It is believed that our design can offer powerful camouflage tactics to address the stealth problem in ever-changing environments.

16.
Se Pu ; 41(2): 187-194, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36725715

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials composed of multidentate organic units connected by covalent bonds. COFs have been demonstrated to exhibit great potential and research value in many fields, including gas storage and separation, photoelectric devices, fluorescence sensors, catalysis, drug delivery, dye and pollutant adsorption, and electronic devices, and so on. The COFs obtained by post-synthesis modification tend to exhibit high crystallinities and porosities, thereby rendering them suitable materials for use in the fields of chiral resolution, asymmetric catalysis, and chromatography. In this work, TpPa-NO2 was synthesized from 1,3,5-tricarbaldehyde phloroglucinol and 2-nitro-1,4-phenylenediamine, which was then reduced to TpPa-NH2. Subsequently, this material was modified with D-glucose via a post-synthesis modification strategy to obtain the TpPa-NH2-Glu. TpPa-NH2-Glu were characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD) analysis, etc. In the XRD pattern, the peaks observed at 4.7°ï¼Œ 8.1°ï¼Œ 11.1°ï¼Œ and 27° were attributed to the TpPa-NH2-Glu, and these peaks are consistent with previous reports, thereby confirming the successful synthesis of this derivative. In addition, circular dichroism experiments indicated that the TpPa-NH2-Glu exhibited a Cotton effect, further confirming the chiral COF was prepared. Subsequently, this material was immobilized on the surface of spherical silica gel particles via the net-wrapping method to prepare a stationary phase for high performance liquid chromatographic column. Using n-hexane-isopropanol (9∶1, v/v) or methanol-water (9∶1, v/v) as mobile phases at a flow rate of 0.5 mL/min, 16 racemates and two benzene-based positional isomers (o,m,p-nitroaniline and o,m,p-Iodoaniline) were successfully resolved by this chiral column. In addition, under methanol-water (9∶1, v/v) mobile phase conditions, five racemates were separated, among which propranolol hydrochloride, warfarin, and metoprolol reached baseline separation. Furthermore, under n-hexane-isopropanol (9∶1, v/v) mobile phase conditions, 11 racemates were resolved, among which ethyl 2-bromopropionate and 3-butyn-2-ol reached baseline separation. Meanwhile, the effect of temperature on the TpPa-NH2-Glu liquid chromatography column and the repeatability of the TpPa-NH2-Glu liquid chromatography column were also explored. The HPLC column prepared by TpPa-NH2-Glu had good repeatability, and its relative standard deviation (RSD) was 1.55% and 1.46%, respectively. It is demonstrated that the TpPa-NH2-Glu material has good resolution ability for chiral compounds.

17.
Molecules ; 28(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677719

ABSTRACT

The chiral covalent-organic framework (CCOF) is a new kind of chiral porous material, which has been broadly applied in many fields owing to its high porosity, regular pores, and structural adjustability. However, conventional CCOF particles have the characteristics of irregular morphology and inhomogeneous particle size distribution, which lead to difficulties in fabricating chromatographic columns and high column backpressure when the pure CCOFs particles are directly used as the HPLC stationary phases. Herein, we used an in situ growth strategy to prepare core-shell composite by immobilizing MDI-ß-CD-modified COF on the surface of SiO2-NH2. The synthesized MDI-ß-CD-modified COF@SiO2 was utilized as a novel chiral stationary phase (CSP) to explore its enantiomeric-separation performance in HPLC. The separation of racemates and positional isomers on MDI-ß-CD-modified COF@SiO2-packed column (column A) utilizing n-hexane/isopropanol as the mobile phase was investigated. The results demonstrated that column A displayed remarkable separation ability for racemic compounds and positional isomers with good reproducibility and stability. By comparing the MDI-ß-CD-modified COF@SiO2-packed column (column A) with commercial Chiralpak AD-H column and the previously reported ß-CD-COF@SiO2-packed column (column B), the chiral recognition ability of column A can be complementary to that of Chiralpak AD-H column and column B. The relative standard deviations (RSDs) of the retention time and peak area for the separation of 1,2-bis(4-fluorophenyl)-2-hydroxyethanone were 0.28% and 0.79%, respectively. Hence, the synthesis of CCOFs@SiO2 core-shell composites as the CSPs for chromatographic separation has significant research potential and application prospects.

18.
IEEE Trans Cybern ; 53(11): 6815-6828, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35500081

ABSTRACT

Various optimal control and system designs involve searching for a feedback gain matrix with structural constraints. As an alternative solution, the parameter space methods map the constraints from the state space to another extended state-input space, in which an equivalent optimization problem is solved. However, to further extend its applications, there are still some issues need to be addressed, such as the limited type of structural constraints, the marginally stable solutions, and the low computation efficiency. In this article, we aim to make this method applicable to a class of structural constraints for some elements in the gain matrix being zero or with intrarow and intracolumn constraints. To address such structured control problem, we propose a procedure to transform the original system to an extended system with the decentralized feedback matrix. From here, the mapping rules to the parameter space are given for the decentralized feedback matrix with both intrarow and intracolumn constraints. To avoid oscillatory closed-loop dynamics, we include the closed-loop dominant pole constraints during optimization. In addition, to improve the computation efficiency during optimization, we revise the cutting plane logic, which allows adding multiple linear constraints within a single iteration. Simulation examples demonstrate the effectiveness of the proposed method.

19.
J Chromatogr A ; 1683: 463551, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36219968

ABSTRACT

Chiral polyimine macrocycles (CPMs) constitute a new family of organic macrocycles that have defined cavities, rigid shapes, inherent chirality and multiple cooperative binding sites, and have shown great potential in diverse areas. However, the application of CPMs for high performance liquid chromatography (HPLC) enantioseparation has rarely been reported. In this work, a novel chiral stationary phase (CSP) for HPLC was prepared by chemical bonding of a CPM (C54H72N6O3) onto thiolated silica via thiol-ene click reaction. The CSP exhibited good enantioselectivity in both normal- and reversed-phase HPLC. Chiral compounds included alcohols, diols, ketones, organic acids, esters, ethers, amines, and epoxides were enantioseparated on the column in normal-phase mode (17 compounds) and reversed-phase mode (20 compounds). Importantly, broader chiral resolution was observed with the column than that obtained using our previously studied chiral macrocycle H3L-based column, indicating the potential to significantly improve and broaden applicability of this novel macrocycle-type CSPs. Moreover, the CSP exhibited good complementary enantioseparation to Chiralpak AD-H and Chiralcel OD-H columns, enabling separation of some racemates that could not be separated by the two popular chiral HPLC columns. In addition, the fabricated column exhibited good stability and reproducibility. The relative standard deviations (RSDs) (n = 5) of retention time and resolution after multiple injections were < 0.20 % and < 0.39 %, respectively. The results demonstrated the great potential of this type of CPM for HPLC separation of enantiomers.


Subject(s)
Alcohols , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Stereoisomerism , Silicon Dioxide/chemistry , Sulfhydryl Compounds , Amines , Epoxy Compounds , Ethers , Ketones
20.
Min Metall Explor ; 39(3): 961-968, 2022 May 04.
Article in English | MEDLINE | ID: mdl-36061490

ABSTRACT

Mine equipment fires remain as one of the most concerning safety issues in the mining industry, and most equipment fires were caused by hot surface ignitions. Detailed experimental investigations were conducted at the NIOSH Pittsburgh Mining Research Division on hot surface ignition of liquid fuels under ventilation in a mining environment. Three types of metal surface materials (stainless steel, cast iron, carbon steel), three types of liquids (diesel fuel, hydraulic fluid, engine oil), four air ventilation speeds (0, 0.5, 1.5, 3 m/s) were used to study the hot surface ignition probability under these conditions. Visual observation and thermocouples attached on the metal surface were used to indicate the hot surface ignition from the measured temperatures. Results show that the type of metal has a noticeable effect on the hot surface ignition, while ventilation speed has a mixed influence on ignition. Different types of liquid fuels also show different ranges of ignition temperatures. Results from this work can be used to help understand equipment mine fires and develop mitigation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...