Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37560977

ABSTRACT

Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.


Subject(s)
Cues , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Heart , Myocardium , Signal Transduction , Hippo Signaling Pathway , Cell Proliferation
2.
J Cardiovasc Dev Dis ; 9(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35200697

ABSTRACT

Contractility of the adult heart relates to the architectural degree of sarcomeres in individual cardiomyocytes (CMs) and appears to be inversely correlated with the ability to regenerate. In this study we utilized multiple imaging techniques to follow the sequence of sarcomere disassembly during mitosis resulting in cellular or nuclear division in a source of proliferating human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed that both mono- and binuclear hiPSC-CMs give rise to mononuclear daughter cells or binuclear progeny. Within this source of highly proliferative hiPSC-CMs, treated with the CHIR99021 small molecule, we found that Wnt and Hippo signaling was more present when compared to metabolic matured non-proliferative hiPSC-CMs and adult human heart tissue. Furthermore, we found that CHIR99021 increased the efficiency of non-viral vector incorporation in high-proliferative hiPSC-CMs, in which fluorescent transgene expression became present after the chromosomal segregation (M phase). This study provides a tool for gene manipulation studies in hiPSC-CMs and engineered cardiac tissue. Moreover, our data illustrate that there is a complex biology behind the cellular and nuclear division of mono- and binuclear CMs, with a shared-phenomenon of sarcomere disassembly during mitosis.

3.
Vaccine ; 37(3): 444-451, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30545716

ABSTRACT

Newcastle disease (ND) is one of the most severe avian infectious disease inflicting a great loss on poultry industry worldwide. The control of ND relies on proper vaccination strategies. The vaccine strains of Newcastle disease virus (NDV) mainly belong to genotype I, II or III, which cannot fully prohibit virus shedding against the prevalent genotype VII virulent strain attack. To develop a safe, genotype matched vaccine candidate, we employed a bac-to-bac expression system and constructed a genotype VII NDV strain based virus-like particles (NDV VLPs). It was constructed with NDV M protein as the skeleton, and protective antigen F and HN proteins displayed on the surface. The NDV VLPs exhibited a similar appearance to the live NDV particles, but with denser F and HN proteins displayed on the surface. The immunization assay indicated that NDV VLPs stimulated a longer protection period, less tissue virus loading and shorter virus shedding period than the commercialized LaSota-formulated vaccine when challenged with genotype VII NDV strain. These results proposed the potential role of NDV VLPs as an alternative to current live genotype unmatched vaccine for the control and eliminate NDV in the avian flocks.


Subject(s)
Newcastle Disease/prevention & control , Poultry Diseases/prevention & control , Vaccines, Virus-Like Particle/immunology , Viral Load , Viral Vaccines/immunology , Virus Shedding , Animals , Antibodies, Viral/immunology , Chickens , Genotype , Newcastle disease virus/genetics , Poultry Diseases/virology , Vaccination , Vaccines, Attenuated/immunology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
4.
Virus Genes ; 53(1): 63-70, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27913979

ABSTRACT

Newcastle disease (ND) is a highly contagious disease of poultry caused by Newcastle disease virus (NDV). Multiple genotypes of NDV have been circulating worldwide and NDV is continuously evolving, resulting into more diversity. Of multiple viral genotypes, VII is particularly important given that it had been associated with most recent ND outbreaks worldwide. In this study, an epidemiological investigation performed in northeastern China during 2014-2015 showed that 11 genotype VII isolates amounted to 55 percent in a total number of NDV isolates. Therefore, to evaluate the genetic diversity worldwide and epidemiological distribution in China of genotype VII NDV, a phylogenetic analysis based on the 1255 complete F gene sequences showed that VII is the most predominant genotype worldwide. A further detailed characterization on genotype VII was conducted based on the 477 complete F gene sequences from 11 isolates and 466 reference viruses available in GenBank. The results demonstrated that VII can be further divided into 8 sub-genotypes (VIIb, VIId-VIIj), indicating its complex genetic diversity. It is worthy of note that the isolation rate of VIIj is increasing recently. It emphasizes the necessity to pay close attention to the epidemiological dynamic of genotype VII NDV and highlights the importance of vaccination program.


Subject(s)
Genetic Variation , Genotype , Newcastle disease virus/genetics , Animals , China/epidemiology , Evolution, Molecular , Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Phylogeny , Phylogeography , Poultry , RNA, Viral , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...