Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38902567

ABSTRACT

PURPOSE: The objective of this study was to discern ferroptosis-related genes (FRGs) linked to non-obstructive azoospermia and investigate the associated molecular mechanisms. METHOD: A dataset related to azoospermia was retrieved from the Gene Expression Omnibus database, and FRGs were sourced from GeneCards. Ferroptosis-related differentially expressed genes (FRDEGs) were discerned. Subsequently, these genes underwent analyses encompassing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, as well as protein-protein interaction (PPI) networks and assessments of functional similarity. Following the identification of hub genes, an exploration of immune infiltration, single-cell expression, diagnostic utility, and interactions involving hub genes, RNA-binding proteins (RBPs), transcription factors (TFs), microRNAs (miRNAs), and drugs was conducted. RESULTS: A total of 35 differentially expressed FRGs were discerned. These genes demonstrated enrichment in functions and pathways associated with ferroptosis. From the PPI network, eight hub genes were selected. Functional similarity analysis highlighted the potential pivotal roles of HMOX1 and GPX4 in azoospermia. Analysis of immune cell infiltration indicated a significant decrease in activated dendritic cells in the azoospermia group, with notable correlations between hub genes, particularly SAT1 and HMGCR, and immune cell infiltration. Unique expression patterns of hub genes across various cell types in the human testis were observed, with GPX4 prominently enriched in spermatid/sperm. Eight hub genes exhibited robust diagnostic value (AUC > 0.75). Lastly, a comprehensive hub gene-miRNA-TF-RBP-drug network was constructed. CONCLUSION: In summary, our investigation unveiled eight FRDEGs associated with azoospermia, which hold potential as biomarkers for the diagnosis and treatment of azoospermia.

2.
J Neuropathol Exp Neurol ; 83(3): 161-167, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38263262

ABSTRACT

Recombinant human erythropoietin (rh-EPO) has been shown to stimulate neurogenesis and angiogenesis, both of which play crucial roles in the repair of brain injuries. Previously, we observed that rh-EPO treatment effectively reduced brain damage and enhanced angiogenesis in a neonatal rat model of periventricular white matter damage (PWMD). The objective of this research is to investigate the specific mechanism through which rh-EPO regulates angiogenesis following PWMD in premature neonates. We conducted experiments utilizing a neonatal PWMD model. Following rh-EPO treatment, the levels of erythropoietin receptor (EPOR) were found to be increased in the damaged brain of rats. Although the total amount of extracellular signal-regulated kinase (ERK), a downstream protein in the EPO signaling pathway, remained unchanged, there was clear upregulation of phosphorylated ERK1 (p-ERK1) levels. The increase in levels of p-ERK1 was inhibited by an ERK kinase inhibitor, while the total amount of ERK remained unchanged. Conversely, the levels of EPOR were not affected by the inhibitor. Notably, the introduction of rh-EPO led to a significant increase in the frequency of angiogenesis-related cells and the expression levels of angiogenic factors. However, these effects were nullified when the ERK pathway was blocked. These findings indicate that rh-EPO enhances angiogenic responses through the EPOR-ERK1 pathway in a neonatal PWMD model.


Subject(s)
Erythropoietin , White Matter , Rats , Animals , Humans , Animals, Newborn , White Matter/metabolism , Rats, Sprague-Dawley , Erythropoietin/pharmacology , Erythropoietin/metabolism , Signal Transduction/physiology , Receptors, Erythropoietin/metabolism
3.
Front Vet Sci ; 8: 798559, 2021.
Article in English | MEDLINE | ID: mdl-35097046

ABSTRACT

African swine fever (ASF) is a highly detrimental viral disease caused by African swine fever virus (ASFV). The occurrence and prevalence of this disease have become a serious threat to the global swine industry and national economies. At present, the detection volume of African swine fever is huge, more sensitive and accurate detection techniques are needed for the market. pp62 protein, as a protein in the late stage of infection, has strong antigenicity and a high corresponding antibody titer in infected pigs. In this study, the CP530R gene was cloned into expression vector pET-28a to construct a prokaryotic expression plasmid, which was induced by IPTG to express soluble pp62 protein. Western blot analysis showed that it had great reactivity. Using the purified recombinant protein as an antigen, an indirect ELISA method for detecting ASFV antibody was established. The method was specific only to ASFV-positive serum, 1:1600 diluted positive serum could still be detected, and the coefficients of variation (CV) of the intra assay and inter assay were both <10%. It turns out that the assays had excellent specificity, sensitivity, and repeatability. This provides an accurate, rapid, and economical method for the detection of ASFV antibody in clinical pig serum samples.

4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 38(2): 217-21, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-27181901

ABSTRACT

OBJECTIVE: To explore the impacts of erythropoietin on vascular endothelial growth factor receptor 2 (VEGFR2) by the extracellular signal-regulated kinase (ERK) signaling pathway in a neonatal rat model of periventricular white matter damage. METHODS: All of postnatal day 4 rats were randomized into three groups: the sham group [without hypoxia-ischemia (HI)], the HI group (HI with saline administration), and the erythropoietin (EPO) group [HI with recombinant human erythropoietin (rh-EPO) administration]. Rat pups underwent permanent ligation of the right common carotid artery, followed by 6% O2 for 2 hours or sham operation and normoxic exposure. Immediately after the HI, rats received a single intraventricular injection of rh-EPO (0.6 IU/g body mass) or saline. ERK and phosphorylation-ERK were examined at 60 minutes and 90 minutes after operation, and VEGFR2 were detected at 2 and 4 days after operation by using Western blot. RESULTS: At 60 minutes and 90 minutes after operation, the proteins of phosphorylation-ERK were significantly higher in HI rats than in the sham rats and significantly higher in HI+EPO rats than in the HI rats (P<0.05). Two days after operation, VEGFR2 was not significantly different between sham and HI rats. However, the proteins of VEGFR2 were increased after administration of rh-EPO (P<0.05). Four days after operation, the proteins of VEGFR2 were significantly higher in HI rats than in the sham rats and significantly higher in HI+EPO rats than in the HI rats (P<0.05). CONCLUSION: EPO may regulate VEGFR2 expression by affecting the intracranial ERK signaling pathways.


Subject(s)
Erythropoietin/pharmacology , Hypoxia-Ischemia, Brain/physiopathology , MAP Kinase Signaling System , Vascular Endothelial Growth Factor Receptor-2/metabolism , White Matter/physiopathology , Animals , Animals, Newborn , Disease Models, Animal , Humans , Phosphorylation , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
5.
Chem Commun (Camb) ; 49(86): 10106-8, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24045699

ABSTRACT

Ethylene glycol (EG) has been obtained with 71.53% selectivity and 15.77% methanol conversion under optimized conditions using a double dielectric barrier discharge (DDBD) reactor. The importance of the discharge intensity and the obvious catalytic effect of the hydrogen co-feed were observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...