Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Drugs ; 30(10): 1022-1030, 2019 11.
Article in English | MEDLINE | ID: mdl-31283543

ABSTRACT

Osthole is an antitumor compound, which effect on Gallbladder cancer (GBC) has been not elucidated. This study focused on its anti-GBC effect and mechanism both in vitro and in vivo. The antiproliferation effect on cell lines NOZ and SGC-996 were measured by cell counting kit-8 (CCK-8) and colony formation assay. The effects on cell apoptosis and cell cycle were investigated by flow cytometry assay. The migration effect was checked by transwell assay and the expressions of proteins were examined by Western Blots. Also, we did an in-vivo experiment by intraperitoneal injection of osthole in nude mice. The results showed that cell proliferation and viability were inhibited in a dose- and time-dependent manner. The similar phenomenon was also found in vivo. Flow cytometric assay confirmed that osthole inhibited cells proliferation via inducing apoptosis and G2/M arrest. Transwell assay indicated that osthole inhibited the migration in a dose-dependent manner. Expression of key proteins related with apoptosis and cell cycle were testified after osthole treatment. Also, we found the key proteins involved in the JAK/STAT3 signal way decreased after osthole treatment. This study suggested that osthole can inhibit the progression of human GBC cell lines, thus maybe a potential drug for GBC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Gallbladder Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/pathology , Humans , Janus Kinases/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
2.
Onco Targets Ther ; 11: 4479-4490, 2018.
Article in English | MEDLINE | ID: mdl-30122940

ABSTRACT

BACKGROUND: Cordycepin, the main active ingredient of a traditional Chinese herbal remedy - extracted from Cordyceps sinensis - has been demonstrated as a very effective anti-inflammatory and antitumor drug. The present study investigated its antitumor effect on pancreatic cancer, a highly aggressive cancer with extremely poor prognosis due to malignancy, and clarified its underlying mechanism both in vitro and in vivo. METHODS: The antitumor viability of cordycepin on human pancreatic cancer MIAPaCa-2 and Capan-1 cells was determined by colony formation assays. Annexin V/PI double staining and flow cytometry assay were used to investigate whether cordycepin induced apoptosis and cell cycle arrest. The mitochondrial membrane potential (ΔΨm) was analyzed by Rhodamine 123 staining, and expression of related proteins evaluated by Western blot and immunohistochemistry, both on pancreatic cancer cells and tumor xenografts to reveal the potential mechanism for the effect of cordycepin. Furthermore, the in vivo efficacy was examined on nude mice bearing MIAPaCa-2 cell tumors treated by intraperitoneal injection of cordycepin (0, 15, and 50 mg/kg/d) for 28 days. RESULTS: Cordycepin inhibited cell viability, proliferation and colony formation ability and induced cell cycle arrest and early apoptosis of human pancreatic cancer cells (MIAPaCa-2 and Capan-1) in a dose- and time-dependent manner. The same effect was also observed in vivo. Decrease of ΔΨm and upregulation of Bax, cleaved caspase-3, cleaved caspase-9, and cleaved PARP as well as downregulation of Bcl-2 both in vitro and in vivo indicated that the mitochondria-mediated intrinsic pathway was involved in cordycepin's antitumor effect. CONCLUSION: Our data showed that cordycepin inhibited the activity of pancreatic cancer both in vitro and in vivo by regulating apoptosis-related protein expression through the mitochondrial pathway and suggest that cordycepin may be a promising therapeutic option for pancreatic cancer.

3.
Cell Physiol Biochem ; 41(5): 2117-2131, 2017.
Article in English | MEDLINE | ID: mdl-28427077

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is an aggressive and highly lethal biliary tract malignancy, with extremely poor prognosis. In the present study, we analyzed the potential involvement of MYBL2, a member of the Myb transcription factor family, in the carcinogenesis of human GBC. METHODS: MYBL2 expression levels were measured in GBC and cholecystitis tissue specimens using quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) assays. The effects of MYBL2 on cell proliferation and DNA synthesis were evaluated using Cell Counting Kit-8 assay (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) retention assay, flow cytometry analysis, western blot, and a xenograft model of GBC cells in nude mice. RESULTS: MYBL2 expression was increased in GBC tissues and associated with histological differentiation, tumour invasion, clinical stage and unfavourable overall survival in GBC patients. The downregulation of MYBL2 expression resulted in the inhibition of GBC cell proliferation, and DNA replication in vitro, and the growth of xenografted tumours in nude mice. Conversely, MYBL2 overexpression resulted in the opposite effects. CONCLUSIONS: MYBL2 overexpression promotes GBC cell proliferation through the regulation of the cell cycle at the S and G2/M phase transitions. Thus, MYBL2 could serve as a potential prognostic and therapeutic biomarker in GBC patients.


Subject(s)
Biomarkers, Tumor/biosynthesis , Cell Cycle Proteins/biosynthesis , Cell Proliferation , Gallbladder Neoplasms , Neoplasm Proteins/biosynthesis , Trans-Activators/biosynthesis , Aged , Aged, 80 and over , Animals , Disease-Free Survival , Female , Follow-Up Studies , Gallbladder Neoplasms/metabolism , Gallbladder Neoplasms/mortality , Gallbladder Neoplasms/pathology , Humans , Male , Mice , Mice, Nude , Middle Aged , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...