Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; 20(13): e2308743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37948424

ABSTRACT

Long-term exposure to low concentration indoor VOCs of acetaldehyde (CH3CHO) is harmful to human health. Thus, a novel isogenous heterojunction CeO2/Ce-MOF photocatalyst is synthesized via a one-step hydrothermal method for the effective elimination of CH3CHO in this work. This CeO2/Ce-MOF photocatalyst performs well in CH3CHO removal and achieves an apparent quantum efficiency of 7.15% at 420 nm, which presents ≈6.7 and 3.4 times superior to those generated by CeO2 and Ce-MOF, respectively. The enhanced efficiency is due to two main aspects including i) an effective photocarrier separation ability and the prolonged reaction lifetime of excitons play crucial roles and ii) the formation of an internal electric field (IEF) is sufficient to overcome the considerable exciton binding energy, and increases the exciton dissociation efficiency by up to 50.4%. Moreover, the reasonable pathways and mechanisms of CH3CHO degradation are determined by in situ DRIFTS analysis and simulated DFT calculations. Those results demonstrated that S-scheme heterojunction successfully increases the efficiency of harmful volatile organic compounds elimination, and it offers essential guidance for designing rare earth-based MOF photocatalysts.

2.
J Colloid Interface Sci ; 652(Pt B): 1503-1511, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659318

ABSTRACT

Two-dimensional (2D) beta indium sulfide (ß-In2S3) shows great potential in photocatalytic hydrogen production due to its broad-spectrum response, relatively negative conduction band edge, high carrier mobility and low toxicity. However, the high charge recombination rate limits the application of In2S3. Here, we in-situ grew 2D cadmium sulfide (CdS) on the surface of In2S3 doped with copper ions (Cu2+) to construct a heterojunction photocatalyst that suppresses charge recombination. The in-situ grown method and shared sulfur composition were conducive to forming the efficient interface contact between In2S3 and CdS, promoting charge transfer and showing the high spatial charge separation rate, resulting in a hydrogen production rate of 868 µmol g-1h-1. The induced Cu2+ extended the light absorption range and stabilized the photocatalyst. By creating stable 2D/2D heterojunction photocatalysts with high charge separation efficiency, this work opens new possibilities for applying In2S3 materials in photocatalytic hydrogen production.

3.
J Colloid Interface Sci ; 650(Pt B): 1871-1880, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517187

ABSTRACT

Current aqueous supercapacitors (SCs) possess the relative low energy density, and there is therefore widespread interest in cost-effective fabrication of capacitive materials with promoted specific capacitance and/or broadened voltage window. Here, a redox-active azure C-decorated N-doped graphene aerogel (AC - NGA) is fabricated using a simple hydrothermal self-assembly method through strong noncovalent π-π interaction. AC - NGA highlights an excellent charge storage performance (a high 591F g-1 gravimetric capacitance under a current density of 1.0 A g-1 and ultrahigh voltage window of 2.3 V) under pH-universal conditions. The capacitive contribution of charge storage is 91.7%, exceeding or comparable to those of the best pseudocapacitors known. Furthermore, a symmetric AC - NGA//AC - NGA device realizes high energy and power densities (15.2-60.2 Wh kg-1 at 650-23,000 W kg-1) and excellent cycling stability in acidic, neutral, and basic aqueous solutions. This work offers a cost-effective strategy to combine redox dye molecules with heteroatom-doped graphene aerogel for building green efficient pH-universal aqueous supercapacitors.

4.
J Am Chem Soc ; 145(31): 17232-17241, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37493612

ABSTRACT

Supramolecular radical chemistry is an emerging area bridging supramolecular chemistry and radical chemistry, and the integration of radicals into the supramolecular architecture offers a new dimension for tuning their structures and functions. Although various efforts have been devoted to the fabrication of supramolecular junctions, the charge transport characterization through the supramolecular radicals remained unexplored due to the challenges in creating supramolecular radicals at the single-molecule level. Here, we demonstrate the fabrication and charge transport investigation of a supramolecular radical junction using the electrochemical scanning tunneling microscope-based break junction (EC-STM-BJ) technique. We found that the conductance of a supramolecular radical junction was more than 1 order of magnitude higher than that of a supramolecular junction without a radical and even higher than that of a fully conjugated oligophenylenediamine molecule with a similar length. The combined experimental and theoretical investigations revealed that the radical increased the binding energy and decreased the energy gap in the supramolecular radical junction, which leads to the near-resonant transport through the supramolecular radical. Our work demonstrated that the supramolecular radical can provide not only strong binding but also efficient electrical coupling between building blocks, which provides new insights into supramolecular radical chemistry and new materials with supramolecular radicals.

5.
J Colloid Interface Sci ; 650(Pt A): 416-425, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37418892

ABSTRACT

Developing artificial S-scheme systems with highly active catalysts is significant to long-term solar-to-hydrogen conversion. Herein, CdS nanodots-modified hierarchical In2O3/SnIn4S8 hollow nanotubes were synthesized by an oil bath method for water splitting. Benefiting from the synergy among the hollow structure, tiny size effect, matched energy level positions, and abundant coupling heterointerfaces, the optimized nanohybrid attains an impressive photocatalytic hydrogen evolution rate of 110.4 µmol/h, and the corresponding apparent quantum yield reaches 9.7% at 420 nm. On In2O3/SnIn4S8/CdS interfaces, the migration of photoinduced electrons from both CdS and In2O3 to SnIn4S8via intense electronic interactions contributes to the ternary dual S-scheme modes, which are beneficial to promote faster spatial charge separation, deliver better visible light-harvesting ability, and provide more reaction active sites with high potentials. This work reveals protocols for rational design of on-demand S-scheme heterojunctions for sustainably converting solar energy into hydrogen in the absence of precious metals.

6.
Proc Natl Acad Sci U S A ; 119(46): e2211786119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343232

ABSTRACT

The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.

7.
Front Chem ; 10: 920121, 2022.
Article in English | MEDLINE | ID: mdl-35592308

ABSTRACT

[This corrects the article DOI: 10.3389/fchem.2021.812287.].

8.
Small ; 18(10): e2107220, 2022 03.
Article in English | MEDLINE | ID: mdl-34927352

ABSTRACT

The electronic noise characterization of single-molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time-dependent evolution of charge transport mechanisms in the single-molecule break junction process. By introducing time-frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power-law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through-space transport to the through-bond transport, and is dominated by through-space transport again when the junction is about to rupture. The authors' results provide a flicker noise-based way to characterize the time-dependent evolution of charge transport mechanisms in single-molecule break junctions.


Subject(s)
Electronics , Nanotechnology
9.
Small ; 18(3): e2104554, 2022 01.
Article in English | MEDLINE | ID: mdl-34796644

ABSTRACT

The host-guest interaction acts as an essential part of supramolecular chemistry, which can be applied in confined reaction. However, it is challenging to obtain the dynamic process during confined reactions below micromolar concentrations. In this work, a new method is provided to characterize the dimerization process of the guest 1,2-bis(4-pyridinyl) ethylene in host cucurbit[8]curil using scanning tunneling microscope-break junction (STM-BJ) technique. The guest reaction kinetics is quantitatively by nuclear magnetic resonance (NMR) and in situ single-molecule junctions. It is found that in the single-molecule conductance measurements, the electrical signals of the reactants with a concentration as low as 5 × 10-6  m are clearly detected, and the reaction kinetics at micromolar concentrations are further obtained. However, in NMR measurements, the characteristic peak signal of the reactants is undetectable when the concentration of the reactants is lower than 0.5 × 10-3  m and it cannot be quantified. In addition, the strong electric field from the nanogap accelerates the reaction. This work reveals that single-molecule STM-BJ techniques are more sensitive for tracking confined reactions than that by NMR techniques and can be used to study effect of extremely strong electric field on kinetics.


Subject(s)
Nanotechnology , Magnetic Resonance Spectroscopy
10.
Small Methods ; 5(3): e2001064, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34927823

ABSTRACT

With the goal of creating single-molecule devices and integrating them into circuits, the emergence of single-molecule electronics provides various techniques for the fabrication of single-molecule junctions and the investigation of charge transport through such junctions. Among the techniques for characterization of charge transport through molecular junctions, electronic noise characterization is an effective strategy with which issues from molecule-electrode interfaces, mechanisms of charge transport, and changes in junction configurations are studied. Electronic noise analysis in single-molecule junctions can be used to identify molecular conformations and even monitor reaction kinetics. This review summarizes the various types of electronic noise that have been characterized during single-molecule electrical detection, including the functions of random telegraph signal (RTS) noise, flicker noise, shot noise, and their corresponding applications, which provide some guidelines for the future application of these techniques to problems of charge transport through single-molecule junctions.

11.
Nanoscale ; 13(29): 12594-12601, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34259698

ABSTRACT

The control of single atoms offers fundamental insight into understanding the charge transport through single clusters, and the atomic precision of the clusters provides the opportunity to manipulate the charge transport even at the single-atom level. Herein, we designed and investigated the electrical conductance and thermopower of Anderson-type polyoxometalate (POM) clusters with single-atom variation using the scanning tunneling microscopy break-junction (STM-BJ) technique. Our results show the electrical conductance of single clusters can be changed by an order of magnitude by substituting different center-metal atoms, and the electrical conductance of clusters shows different bias-dependence. Furthermore, the Seebeck coefficients of the POM clusters also can be significantly changed by the center-metal atoms. The non-equilibrium quantum transport calculations reveal that the electrostatic potential profile is non-uniformly dependent on the center-metal atoms. This leads to gating of electrical conductance by bias voltage. This supports the tuning of thermopower and bias dependent transmission spectra. This work provides the fundamental understanding of single-atom control of charge transport in POM single-cluster junctions.

12.
Chem Commun (Camb) ; 57(58): 7160-7163, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34184023

ABSTRACT

Here, we report the switching among multiple conductance pathways achieved by sliding the scanning tunneling microscope tip among different binding sites under different electric fields. With an increase in the electric field, high molecular conductance states appear, suggesting the formation of different configurations in single-molecule junctions. The switch can be operated in situ and reversibly, which is also confirmed by the apparent conductance conversion in I-V measurements. Theoretical simulations also agree well with the experimental results, which implies that the electric field enables the possibility to trigger switching in single-molecule junctions.

13.
Front Chem ; 9: 812287, 2021.
Article in English | MEDLINE | ID: mdl-34976957

ABSTRACT

The morphology of nanomaterials has a great influence on the catalytic performance. One-dimensional (1D) nanomaterials have been widely used in the field of catalysis due to their unique linear morphology with large specific surface area, high electron-hole separation efficiency, strong light absorption capacity, plentiful exposed active sites, and so on. In this review, we summarized the recent progress of 1D nanomaterials by focusing on the applications in photocatalysis and electrocatalysis. We highlighted the advanced characterization techniques, such as scanning tunneling microscopy (STM), atomic force microscopy (AFM), surface photovoltage microscopy (SPVM), single-molecule fluorescence microscopy (SMFM), and a variety of combined characterization methods, which have been used to identify the catalytic action of active sites and reveal the mechanism of 1D nanomaterials. Finally, the challenges and future directions of the research on the catalytic mechanism of single-particle 1D nanomaterials are prospected. To our best knowledge, there is no review on the application of single-molecule or single-particle characterization technology to 1D nanomaterial catalysis at present. This review provides a systematic introduction to the frontier field and opens the way for the 1D nanomaterial catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...