Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Health Care Inform ; 31(1)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830766

ABSTRACT

BACKGROUND: Current approaches for initial coronary artery disease (CAD) assessment rely on pretest probability (PTP) based on risk factors and presentations, with limited performance. Infrared thermography (IRT), a non-contact technology that detects surface temperature, has shown potential in assessing atherosclerosis-related conditions, particularly when measured from body regions such as faces. We aim to assess the feasibility of using facial IRT temperature information with machine learning for the prediction of CAD. METHODS: Individuals referred for invasive coronary angiography or coronary CT angiography (CCTA) were enrolled. Facial IRT images captured before confirmatory CAD examinations were used to develop and validate a deep-learning IRT image model for detecting CAD. We compared the performance of the IRT image model with the guideline-recommended PTP model on the area under the curve (AUC). In addition, interpretable IRT tabular features were extracted from IRT images to further validate the predictive value of IRT information. RESULTS: A total of 460 eligible participants (mean (SD) age, 58.4 (10.4) years; 126 (27.4%) female) were included. The IRT image model demonstrated outstanding performance (AUC 0.804, 95% CI 0.785 to 0.823) compared with the PTP models (AUC 0.713, 95% CI 0.691 to 0.734). A consistent level of superior performance (AUC 0.796, 95% CI 0.782 to 0.811), achieved with comprehensive interpretable IRT features, further validated the predictive value of IRT information. Notably, even with only traditional temperature features, a satisfactory performance (AUC 0.786, 95% CI 0.769 to 0.803) was still upheld. CONCLUSION: In this prospective study, we demonstrated the feasibility of using non-contact facial IRT information for CAD prediction.


Subject(s)
Coronary Artery Disease , Face , Thermography , Humans , Thermography/methods , Coronary Artery Disease/diagnostic imaging , Male , Female , Middle Aged , Face/diagnostic imaging , Aged , Predictive Value of Tests , Feasibility Studies , Body Temperature , Machine Learning , Coronary Angiography , Computed Tomography Angiography , Prospective Studies , Infrared Rays
2.
Comput Methods Programs Biomed ; 74(1): 11-27, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14992823

ABSTRACT

Biomedical waveforms, such as electrocardiogram (ECG) and arterial pulse, always possess a lot of important clinical information in medicine and are usually recorded in a long period of time in the application of telemedicine. Due to the huge amount of data, to compress the biomedical waveform data is vital. By recognizing the strong similarity and correlation between successive beat patterns in biomedical waveform sequences, an efficient data compression scheme mainly based on pattern matching is introduced in this paper. The waveform codec consists mainly of four units: beat segmentation, beat normalization, two-stage pattern matching and template updating and residual beat coding. Three different residual beat coding methods, such as Huffman/run-length coding, Huffman/run-length coding in discrete cosine transform domain, and vector quantization, are employed. The simulation results show that our compression algorithms achieve a very significant improvement in the performances of compression ratio and error measurement for both ECG and pulse, as compared with some other compression methods.


Subject(s)
Arteries/physiology , Electrocardiography/methods , Algorithms , Humans , Telemedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...